Model
- Build a Neural Network using ChemML
- Fit the
chemml.model.MLP
model to the training data - Saving the ChemML model
- Loading the saved ChemML model
- Predict the densities for the test data
- Evaluate model performance using
chemml.utils.regression_metrics
- Plot actual vs. predicted values
- If the Underlying (TensorFlow/PyTorch) model is required …
- Sometimes you may need the keras model without the output layer (for e.g., for transfer learning)
- Fit the
- Neural Fingerprints