Feature Selection using chemml.optimization.GeneticAlgorithm
We use a sample dataset from ChemML library which has the SMILES codes and Dragon molecular descriptors for 500 small organic molecules with their densities in \(kg/m^3\). For simplicity, we perform feature selection using Genetic Algorithm on a subset of 20 molecular descriptors.
For more information on Genetic Algorithm, please refer to our paper
[1]:
from chemml.datasets import load_organic_density
_,density,features = load_organic_density()
num_cols = 20
col_names = features.iloc[:, :num_cols].columns
features = features.iloc[:,:num_cols]
print(density.shape, features.shape)
density, features = density.values, features.values
(500, 1) (500, 20)
Defining hyperparameter space
For this, each individual feature is encoded as a binary bit of the chromosome.
0 indicates feature is discarded.
1 indicates feature is selected.
[2]:
space = tuple([{i: {'choice': [0,1]}} for i in range(features.shape[1])])
Defining objective function
The objective function is defined as a function that receives one ‘individual’ of the genetic algorithm’s population that is an ordered list of the hyperparameters defined in the space variable. Within the objective function, the user does all the required calculations and returns the metric (as a tuple) that is supposed to be optimized. If multiple metrics are returned, all the metrics are optimized according to the fitness defined in the initialization of the Genetic Algorithm class.
Here, we use a simple linear regression model to fit the data.
[3]:
from sklearn.metrics import mean_absolute_error
import pandas as pd
from sklearn.linear_model import LinearRegression
def obj(individual, features=features):
df = pd.DataFrame(features)
new_cols = list(map(bool, individual))
df = df[df.columns[new_cols]]
features = df.values
ridge = LinearRegression(n_jobs=1)
ridge.fit(features[:400], density[:400])
pred = ridge.predict(features[400:])
return mean_absolute_error(density[400:], pred)
Optimize the feature space
[4]:
from chemml.optimization import GeneticAlgorithm
ga = GeneticAlgorithm(evaluate=obj, space=space, fitness=("min", ), crossover_type="Uniform",
pop_size = 10, crossover_size=6, mutation_size=4, algorithm=3)
fitness_df, final_best_features = ga.search(n_generations=20)
ga.search
returns:
a dataframe with the best individuals of each generation along with their fitness values and the time taken to evaluate the model
a dictionary containing the best individual (in this case the top features)
[5]:
fitness_df
[5]:
Best_individual | Fitness_values | Time (hours) | |
---|---|---|---|
0 | (1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, ... | 14.231872 | 0.000518 |
1 | (1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, ... | 13.511623 | 0.000494 |
2 | (1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, ... | 11.969715 | 0.000498 |
3 | (1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, ... | 11.969715 | 0.000511 |
4 | (1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, ... | 11.969715 | 0.000506 |
5 | (1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, ... | 11.969715 | 0.000495 |
6 | (1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, ... | 11.969715 | 0.000482 |
7 | (1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, ... | 11.626140 | 0.000487 |
8 | (1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, ... | 11.626140 | 0.000493 |
9 | (1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, ... | 11.536057 | 0.000490 |
10 | (1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, ... | 11.536057 | 0.000487 |
11 | (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, ... | 11.405468 | 0.000486 |
12 | (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, ... | 11.405468 | 0.000480 |
13 | (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, ... | 11.405468 | 0.000484 |
14 | (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, ... | 11.405468 | 0.000492 |
15 | (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, ... | 11.405468 | 0.000489 |
16 | (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, ... | 11.405468 | 0.000487 |
17 | (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, ... | 11.405468 | 0.000494 |
18 | (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, ... | 11.405468 | 0.000504 |
19 | (1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, ... | 11.404044 | 0.000476 |
[6]:
print(final_best_features)
{0: 1, 1: 1, 2: 1, 3: 0, 4: 1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1, 10: 1, 11: 0, 12: 0, 13: 1, 14: 1, 15: 1, 16: 1, 17: 0, 18: 0, 19: 1}
[8]:
# Printing out which columns were selected
df = pd.DataFrame(features, columns=col_names)
new_cols = list(map(bool, tuple([v for k,v in final_best_features.items()])))
print(df[df.columns[new_cols]])
MW AMW Sv Sp Si Mv Me Mp Mi GD \
0 285.54 7.932 22.324 25.801 39.995 0.620 0.980 0.717 1.111 0.140
1 240.24 9.240 18.569 18.455 29.242 0.714 1.032 0.710 1.125 0.131
2 313.42 8.471 24.643 25.938 41.697 0.666 1.009 0.701 1.127 0.108
3 218.32 9.492 15.153 16.466 25.544 0.659 1.024 0.716 1.111 0.179
4 319.45 9.396 23.303 24.824 38.202 0.685 1.015 0.730 1.124 0.114
.. ... ... ... ... ... ... ... ... ... ...
495 296.36 7.799 24.676 25.500 42.903 0.649 1.010 0.671 1.129 0.108
496 328.50 8.645 25.621 27.887 42.324 0.674 0.996 0.734 1.114 0.108
497 373.52 8.120 30.982 33.006 51.318 0.674 0.995 0.718 1.116 0.088
498 323.50 8.513 24.158 26.142 43.404 0.636 1.007 0.688 1.142 0.114
499 348.42 8.103 30.445 31.796 47.112 0.708 0.993 0.739 1.096 0.088
nTA nBT nBO nBM RBF
0 0.0 38.0 19.0 5.0 0.079
1 1.0 28.0 20.0 17.0 0.071
2 0.0 40.0 25.0 16.0 0.075
3 2.0 24.0 14.0 5.0 0.042
4 0.0 37.0 24.0 15.0 0.081
.. ... ... ... ... ...
495 0.0 41.0 25.0 16.0 0.073
496 1.0 41.0 25.0 16.0 0.049
497 0.0 50.0 31.0 22.0 0.060
498 0.0 41.0 24.0 10.0 0.073
499 0.0 47.0 31.0 28.0 0.064
[500 rows x 15 columns]