ConstantColumns
- task:
- Prepare
- subtask:
- data cleaning
- host:
- chemml
- function:
- ConstantColumns
- input tokens (receivers):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of ChemML’s Constant classtypes: (“<class ‘chemml.preprocessing.purge.ConstantColumns’>”,)- output tokens (senders):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of ChemML’s Constant classtypes: (“<class ‘chemml.preprocessing.purge.ConstantColumns’>”,)removed_columns_: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
func_method: string, (default:None)choose one of: (‘fit_transform’, ‘transform’, None)- required packages:
- ChemML, 0.4.1pandas, 0.20.3
- config file view:
##<< host = chemml << function = ConstantColumns<< func_method = None>> id df>> id api>> id df>> id api>> id removed_columns_Note
The documentation page for function parameters:
MissingValues
- task:
- Prepare
- subtask:
- data cleaning
- host:
- chemml
- function:
- MissingValues
- input tokens (receivers):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of ChemML’s MissingValues classtypes: (“<class ‘chemml.preprocessing.handle_missing.missing_values’>”,)- output tokens (senders):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of ChemML’s MissingValues classtypes: (“<class ‘chemml.preprocessing.handle_missing.missing_values’>”,)- wrapper parameters:
func_method: String, (default:None)choose one of: (‘fit_transform’, ‘transform’, None)- required packages:
- ChemML, 0.4.1pandas, 0.20.3
- config file view:
##<< host = chemml << function = MissingValues<< func_method = None<< strategy = ignore_row<< inf_as_null = True<< string_as_null = True<< missing_values = False>> id df>> id api>> id df>> id apiNote
The documentation page for function parameters:
Outliers
- task:
- Prepare
- subtask:
- data cleaning
- host:
- chemml
- function:
- Outliers
- input tokens (receivers):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of ChemML’s Constant classtypes: (“<class ‘chemml.preprocessing.purge.Outliers’>”,)- output tokens (senders):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of ChemML’s Constant classtypes: (“<class ‘chemml.preprocessing.purge.Outliers’>”,)removed_columns_: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
func_method: string, (default:None)choose one of: (‘fit_transform’, ‘transform’, None)- required packages:
- ChemML, 0.4.1pandas, 0.20.3
- config file view:
##<< host = chemml << function = Outliers<< func_method = None<< m = 2.0<< strategy = median>> id df>> id api>> id df>> id api>> id removed_columns_Note
The documentation page for function parameters:
Split
- task:
- Prepare
- subtask:
- data manipulation
- host:
- chemml
- function:
- Split
- input tokens (receivers):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
df1: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)df2: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- required packages:
- ChemML, 0.4.1pandas, 0.20.3
- config file view:
##<< host = chemml << function = Split<< selection = 1>> id df>> id df1>> id df2Note
The documentation page for function parameters:
Binarizer
- task:
- Prepare
- subtask:
- feature representation
- host:
- sklearn
- function:
- Binarizer
- input tokens (receivers):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s Binarizer classtypes: (“<class ‘sklearn.preprocessing.data.Binarizer’>”,)- output tokens (senders):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s Binarizer classtypes: (“<class ‘sklearn.preprocessing.data.Binarizer’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)fit_transform: always make a new api; transform: must receive an api; None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = Binarizer<< track_header = True<< func_method = None<< threshold = 0.0<< copy = True>> id df>> id api>> id df>> id apiNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html#sklearn.preprocessing.Binarizer
Imputer
- task:
- Prepare
- subtask:
- data cleaning
- host:
- sklearn
- function:
- Imputer
- input tokens (receivers):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s Imputer classtypes: (“<class ‘sklearn.preprocessing.imputation.Imputer’>”,)- output tokens (senders):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s Imputer classtypes: (“<class ‘sklearn.preprocessing.imputation.Imputer’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)fit_transform: always make a new api; transform: must receive an api; None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = Imputer<< track_header = True<< func_method = None<< verbose = 0<< missing_values = NaN<< strategy = mean<< copy = True<< axis = 0>> id df>> id api>> id df>> id apiNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Imputer.html#sklearn.preprocessing.Imputer
KFold
- task:
- Prepare
- subtask:
- split
- host:
- sklearn
- function:
- KFold
- input tokens (receivers):
dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s KFold classtypes: (“<class ‘sklearn.model_selection._split.KFold’>”,)fold_gen: Generator of indices to split data into training and test settypes: (“<type ‘generator’>”,)- wrapper parameters:
func_method: string, (default:None)choose one of: (‘split’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = KFold<< func_method = None<< random_state = None<< shuffle = False<< n_splits = 3>> id dfx>> id api>> id fold_genNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
KernelPCA
- task:
- Prepare
- subtask:
- feature transformation
- host:
- sklearn
- function:
- KernelPCA
- input tokens (receivers):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s KernelPCA classtypes: (“<class ‘sklearn.decomposition.kernel_pca.KernelPCA’>”,)- output tokens (senders):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s KernelPCA classtypes: (“<class ‘sklearn.decomposition.kernel_pca.KernelPCA’>”,)- wrapper parameters:
track_header: Boolean, (default:False)Always False, the header of input dataframe is not equivalent with the transformed dataframechoose one of: Falsefunc_method: string, (default:None)fit_transform: always make a new api; transform: must receive an api; inverse_transform: must receive an api; None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, ‘inverse_transform’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = KernelPCA<< track_header = False<< func_method = None<< fit_inverse_transform = False<< kernel = linear<< n_jobs = 1<< eigen_solver = auto<< degree = 3<< max_iter = None<< copy_X = True<< kernel_params = None<< random_state = None<< n_components = None<< remove_zero_eig = False<< tol = 0<< alpha = 1.0<< coef0 = 1<< gamma = None>> id df>> id api>> id df>> id apiNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html#sklearn.decomposition.KernelPCA
LeaveOneOut
- task:
- Prepare
- subtask:
- split
- host:
- sklearn
- function:
- LeaveOneOut
- input tokens (receivers):
dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s LeaveOneOut classtypes: (“<class ‘sklearn.model_selection._split.LeaveOneOut’>”,)fold_gen: Generator of indices to split data into training and test settypes: (“<type ‘generator’>”,)- wrapper parameters:
func_method: string, (default:None)choose one of: (‘split’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = LeaveOneOut<< func_method = None>> id dfx>> id api>> id fold_genNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneOut.html
MaxAbsScaler
- task:
- Prepare
- subtask:
- scaling
- host:
- sklearn
- function:
- MaxAbsScaler
- input tokens (receivers):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s MaxAbsScaler classtypes: (“<class ‘sklearn.preprocessing.data.MaxAbsScaler’>”,)- output tokens (senders):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s MaxAbsScaler classtypes: (“<class ‘sklearn.preprocessing.data.MaxAbsScaler’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)fit_transform: always make a new api; transform: must receive an api; inverse_transform: must receive an api; None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, ‘inverse_transform’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = MaxAbsScaler<< track_header = True<< func_method = None<< copy = True>> id df>> id api>> id df>> id apiNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html#sklearn.preprocessing.MaxAbsScaler
MinMaxScaler
- task:
- Prepare
- subtask:
- scaling
- host:
- sklearn
- function:
- MinMaxScaler
- input tokens (receivers):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s MinMaxScaler classtypes: (“<class ‘sklearn.preprocessing.data.MinMaxScaler’>”,)- output tokens (senders):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s MinMaxScaler classtypes: (“<class ‘sklearn.preprocessing.data.MinMaxScaler’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)fit_transform: always make a new api; transform: must receive an api; inverse_transform: must receive an api; None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, ‘inverse_transform’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = MinMaxScaler<< track_header = True<< func_method = None<< copy = True<< feature_range = (0, 1)>> id df>> id api>> id df>> id apiNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html#sklearn.preprocessing.MinMaxScaler
Normalizer
- task:
- Prepare
- subtask:
- scaling
- host:
- sklearn
- function:
- Normalizer
- input tokens (receivers):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s Normalizer classtypes: (“<class ‘sklearn.preprocessing.data.Normalizer’>”,)- output tokens (senders):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s Normalizer classtypes: (“<class ‘sklearn.preprocessing.data.Normalizer’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)fit_transform: always make a new api; transform: must receive an api None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = Normalizer<< track_header = True<< func_method = None<< copy = True<< norm = l2>> id df>> id api>> id df>> id apiNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html#sklearn.preprocessing.Normalizer
OneHotEncoder
- task:
- Prepare
- subtask:
- feature representation
- host:
- sklearn
- function:
- OneHotEncoder
- input tokens (receivers):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s OneHotEncoder classtypes: (“<class ‘sklearn.preprocessing.data.OneHotEncoder’>”,)- output tokens (senders):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s OneHotEncoder classtypes: (“<class ‘sklearn.preprocessing.data.OneHotEncoder’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)fit_transform: always make a new api; transform: must receive an api; None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = OneHotEncoder<< track_header = True<< func_method = None<< dtype = <type'numpy.float64'><< categorical_features = all<< n_values = auto<< sparse = True<< handle_unknown = error>> id df>> id api>> id df>> id apiNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html#sklearn.preprocessing.OneHotEncoder
PCA
- task:
- Prepare
- subtask:
- feature transformation
- host:
- sklearn
- function:
- PCA
- input tokens (receivers):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s PCA classtypes: (“<class ‘sklearn.decomposition.pca.PCA’>”,)- output tokens (senders):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s PCA classtypes: (“<class ‘sklearn.decomposition.pca.PCA’>”,)- wrapper parameters:
track_header: Boolean, (default:False)Always False, the header of input dataframe is not equivalent with the transformed dataframechoose one of: Falsefunc_method: string, (default:None)fit_transform: always make a new api; transform: must receive an api; inverse_transform: must receive an api; None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, ‘inverse_transform’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = PCA<< track_header = False<< func_method = None<< svd_solver = auto<< iterated_power = auto<< random_state = None<< whiten = False<< tol = 0.0<< copy = True<< n_components = None>> id df>> id api>> id df>> id apiNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA
PolynomialFeatures
- task:
- Prepare
- subtask:
- feature representation
- host:
- sklearn
- function:
- PolynomialFeatures
- input tokens (receivers):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s PolynomialFeatures classtypes: (“<class ‘sklearn.preprocessing.data.PolynomialFeatures’>”,)- output tokens (senders):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s PolynomialFeatures classtypes: (“<class ‘sklearn.preprocessing.data.PolynomialFeatures’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)fit_transform: always make a new api; transform: must receive an api; None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = PolynomialFeatures<< track_header = True<< func_method = None<< include_bias = True<< interaction_only = False<< degree = 2>> id df>> id api>> id df>> id apiNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html#sklearn.preprocessing.PolynomialFeatures
RobustScaler
- task:
- Prepare
- subtask:
- scaling
- host:
- sklearn
- function:
- RobustScaler
- input tokens (receivers):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s RobustScaler classtypes: (“<class ‘sklearn.preprocessing.data.RobustScaler’>”,)- output tokens (senders):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s RobustScaler classtypes: (“<class ‘sklearn.preprocessing.data.RobustScaler’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)fit_transform: always make a new api; transform: must receive an api; inverse_transform: must receive an api; None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, ‘inverse_transform’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = RobustScaler<< track_header = True<< func_method = None<< copy = True<< with_scaling = True<< with_centering = True<< quantile_range = (25.0, 75.0)>> id df>> id api>> id df>> id apiNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html#sklearn.preprocessing.RobustScaler
ShuffleSplit
- task:
- Prepare
- subtask:
- split
- host:
- sklearn
- function:
- ShuffleSplit
- input tokens (receivers):
dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s ShuffleSplit classtypes: (“<class ‘sklearn.model_selection._split.ShuffleSplit’>”,)fold_gen: Generator of indices to split data into training and test settypes: (“<type ‘generator’>”,)- wrapper parameters:
func_method: string, (default:None)choose one of: (‘split’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = ShuffleSplit<< func_method = None<< n_splits = 10<< train_size = None<< random_state = None<< test_size = default>> id dfx>> id api>> id fold_genNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html#sklearn.model_selection.ShuffleSplit
StandardScaler
- task:
- Prepare
- subtask:
- scaling
- host:
- sklearn
- function:
- StandardScaler
- input tokens (receivers):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s StandardScaler classtypes: (“<class ‘sklearn.preprocessing.data.StandardScaler’>”,)- output tokens (senders):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s StandardScaler classtypes: (“<class ‘sklearn.preprocessing.data.StandardScaler’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)fit_transform: always make a new api; transform: must receive an api; inverse_transform: must receive an api; None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, ‘inverse_transform’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = StandardScaler<< track_header = True<< func_method = None<< copy = True<< with_mean = True<< with_std = True>> id df>> id api>> id df>> id apiNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler
StratifiedShuffleSplit
- task:
- Prepare
- subtask:
- split
- host:
- sklearn
- function:
- StratifiedShuffleSplit
- input tokens (receivers):
dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s StratifiedShuffleSplit classtypes: (“<class ‘sklearn.model_selection._split.StratifiedShuffleSplit’>”,)fold_gen: Generator of indices to split data into training and test settypes: (“<type ‘generator’>”,)- wrapper parameters:
func_method: string, (default:None)choose one of: (‘split’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = StratifiedShuffleSplit<< func_method = None<< n_splits = 10<< train_size = None<< random_state = None<< test_size = default>> id dfx>> id api>> id fold_genNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.html#sklearn.model_selection.StratifiedShuffleSplit
train_test_split
- task:
- Prepare
- subtask:
- split
- host:
- sklearn
- function:
- train_test_split
- input tokens (receivers):
dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
dfx_test: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfy_train: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfy_test: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx_train: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = train_test_split<< track_header = True<< shuffle = True<< train_size = None<< random_state = None<< test_size = 0.25<< stratify = None>> id dfy>> id dfx>> id dfx_test>> id dfy_train>> id dfy_test>> id dfx_trainNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
concat
- task:
- Prepare
- subtask:
- data manipulation
- host:
- pandas
- function:
- concat
- input tokens (receivers):
df1: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)df3: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)df2: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- required packages:
- pandas, 0.20.3
- config file view:
##<< host = pandas << function = concat<< join = outer<< verify_integrity = False<< keys = None<< levels = None<< ignore_index = False<< names = None<< join_axes = None<< copy = True<< axis = 0>> id df1>> id df3>> id df2>> id dfNote
The documentation page for function parameters: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.concat.html