ConstantColumns
- task
- Prepare
- subtask
- data cleaning
- host
- chemml
- function
- ConstantColumns
- input tokens (receivers)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of ChemML’s Constant classtypes: (“<class ‘chemml.preprocessing.purge.ConstantColumns’>”,)- output tokens (senders)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of ChemML’s Constant classtypes: (“<class ‘chemml.preprocessing.purge.ConstantColumns’>”,)removed_columns_
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
func_method
: string, (default:None)choose one of: (‘fit_transform’, ‘transform’, None)- required packages
- ChemML, 0.4.1pandas, 0.20.3
- config file view
##
<< host = chemml << function = ConstantColumns
<< func_method = None
>> id df
>> id api
>> id df
>> id api
>> id removed_columns_
Note
The documentation page for function parameters:
MissingValues
- task
- Prepare
- subtask
- data cleaning
- host
- chemml
- function
- MissingValues
- input tokens (receivers)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of ChemML’s MissingValues classtypes: (“<class ‘chemml.preprocessing.handle_missing.missing_values’>”,)- output tokens (senders)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of ChemML’s MissingValues classtypes: (“<class ‘chemml.preprocessing.handle_missing.missing_values’>”,)- wrapper parameters
func_method
: String, (default:None)choose one of: (‘fit_transform’, ‘transform’, None)- required packages
- ChemML, 0.4.1pandas, 0.20.3
- config file view
##
<< host = chemml << function = MissingValues
<< func_method = None
<< strategy = ignore_row
<< inf_as_null = True
<< string_as_null = True
<< missing_values = False
>> id df
>> id api
>> id df
>> id api
Note
The documentation page for function parameters:
Outliers
- task
- Prepare
- subtask
- data cleaning
- host
- chemml
- function
- Outliers
- input tokens (receivers)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of ChemML’s Constant classtypes: (“<class ‘chemml.preprocessing.purge.Outliers’>”,)- output tokens (senders)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of ChemML’s Constant classtypes: (“<class ‘chemml.preprocessing.purge.Outliers’>”,)removed_columns_
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
func_method
: string, (default:None)choose one of: (‘fit_transform’, ‘transform’, None)- required packages
- ChemML, 0.4.1pandas, 0.20.3
- config file view
##
<< host = chemml << function = Outliers
<< func_method = None
<< m = 2.0
<< strategy = median
>> id df
>> id api
>> id df
>> id api
>> id removed_columns_
Note
The documentation page for function parameters:
Split
- task
- Prepare
- subtask
- data manipulation
- host
- chemml
- function
- Split
- input tokens (receivers)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
df1
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)df2
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- required packages
- ChemML, 0.4.1pandas, 0.20.3
- config file view
##
<< host = chemml << function = Split
<< selection = 1
>> id df
>> id df1
>> id df2
Note
The documentation page for function parameters:
Binarizer
- task
- Prepare
- subtask
- feature representation
- host
- sklearn
- function
- Binarizer
- input tokens (receivers)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s Binarizer classtypes: (“<class ‘sklearn.preprocessing.data.Binarizer’>”,)- output tokens (senders)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s Binarizer classtypes: (“<class ‘sklearn.preprocessing.data.Binarizer’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)fit_transform: always make a new api; transform: must receive an api; None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = Binarizer
<< track_header = True
<< func_method = None
<< threshold = 0.0
<< copy = True
>> id df
>> id api
>> id df
>> id api
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html#sklearn.preprocessing.Binarizer
Imputer
- task
- Prepare
- subtask
- data cleaning
- host
- sklearn
- function
- Imputer
- input tokens (receivers)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s Imputer classtypes: (“<class ‘sklearn.preprocessing.imputation.Imputer’>”,)- output tokens (senders)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s Imputer classtypes: (“<class ‘sklearn.preprocessing.imputation.Imputer’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)fit_transform: always make a new api; transform: must receive an api; None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = Imputer
<< track_header = True
<< func_method = None
<< verbose = 0
<< missing_values = NaN
<< strategy = mean
<< copy = True
<< axis = 0
>> id df
>> id api
>> id df
>> id api
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Imputer.html#sklearn.preprocessing.Imputer
KFold
- task
- Prepare
- subtask
- split
- host
- sklearn
- function
- KFold
- input tokens (receivers)
dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s KFold classtypes: (“<class ‘sklearn.model_selection._split.KFold’>”,)fold_gen
: Generator of indices to split data into training and test settypes: (“<type ‘generator’>”,)- wrapper parameters
func_method
: string, (default:None)choose one of: (‘split’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = KFold
<< func_method = None
<< random_state = None
<< shuffle = False
<< n_splits = 3
>> id dfx
>> id api
>> id fold_gen
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
KernelPCA
- task
- Prepare
- subtask
- feature transformation
- host
- sklearn
- function
- KernelPCA
- input tokens (receivers)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s KernelPCA classtypes: (“<class ‘sklearn.decomposition.kernel_pca.KernelPCA’>”,)- output tokens (senders)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s KernelPCA classtypes: (“<class ‘sklearn.decomposition.kernel_pca.KernelPCA’>”,)- wrapper parameters
track_header
: Boolean, (default:False)Always False, the header of input dataframe is not equivalent with the transformed dataframechoose one of: Falsefunc_method
: string, (default:None)fit_transform: always make a new api; transform: must receive an api; inverse_transform: must receive an api; None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, ‘inverse_transform’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = KernelPCA
<< track_header = False
<< func_method = None
<< fit_inverse_transform = False
<< kernel = linear
<< n_jobs = 1
<< eigen_solver = auto
<< degree = 3
<< max_iter = None
<< copy_X = True
<< kernel_params = None
<< random_state = None
<< n_components = None
<< remove_zero_eig = False
<< tol = 0
<< alpha = 1.0
<< coef0 = 1
<< gamma = None
>> id df
>> id api
>> id df
>> id api
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html#sklearn.decomposition.KernelPCA
LeaveOneOut
- task
- Prepare
- subtask
- split
- host
- sklearn
- function
- LeaveOneOut
- input tokens (receivers)
dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s LeaveOneOut classtypes: (“<class ‘sklearn.model_selection._split.LeaveOneOut’>”,)fold_gen
: Generator of indices to split data into training and test settypes: (“<type ‘generator’>”,)- wrapper parameters
func_method
: string, (default:None)choose one of: (‘split’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = LeaveOneOut
<< func_method = None
>> id dfx
>> id api
>> id fold_gen
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneOut.html
MaxAbsScaler
- task
- Prepare
- subtask
- scaling
- host
- sklearn
- function
- MaxAbsScaler
- input tokens (receivers)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s MaxAbsScaler classtypes: (“<class ‘sklearn.preprocessing.data.MaxAbsScaler’>”,)- output tokens (senders)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s MaxAbsScaler classtypes: (“<class ‘sklearn.preprocessing.data.MaxAbsScaler’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)fit_transform: always make a new api; transform: must receive an api; inverse_transform: must receive an api; None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, ‘inverse_transform’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = MaxAbsScaler
<< track_header = True
<< func_method = None
<< copy = True
>> id df
>> id api
>> id df
>> id api
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html#sklearn.preprocessing.MaxAbsScaler
MinMaxScaler
- task
- Prepare
- subtask
- scaling
- host
- sklearn
- function
- MinMaxScaler
- input tokens (receivers)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s MinMaxScaler classtypes: (“<class ‘sklearn.preprocessing.data.MinMaxScaler’>”,)- output tokens (senders)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s MinMaxScaler classtypes: (“<class ‘sklearn.preprocessing.data.MinMaxScaler’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)fit_transform: always make a new api; transform: must receive an api; inverse_transform: must receive an api; None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, ‘inverse_transform’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = MinMaxScaler
<< track_header = True
<< func_method = None
<< copy = True
<< feature_range = (0, 1)
>> id df
>> id api
>> id df
>> id api
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html#sklearn.preprocessing.MinMaxScaler
Normalizer
- task
- Prepare
- subtask
- scaling
- host
- sklearn
- function
- Normalizer
- input tokens (receivers)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s Normalizer classtypes: (“<class ‘sklearn.preprocessing.data.Normalizer’>”,)- output tokens (senders)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s Normalizer classtypes: (“<class ‘sklearn.preprocessing.data.Normalizer’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)fit_transform: always make a new api; transform: must receive an api None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = Normalizer
<< track_header = True
<< func_method = None
<< copy = True
<< norm = l2
>> id df
>> id api
>> id df
>> id api
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html#sklearn.preprocessing.Normalizer
OneHotEncoder
- task
- Prepare
- subtask
- feature representation
- host
- sklearn
- function
- OneHotEncoder
- input tokens (receivers)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s OneHotEncoder classtypes: (“<class ‘sklearn.preprocessing.data.OneHotEncoder’>”,)- output tokens (senders)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s OneHotEncoder classtypes: (“<class ‘sklearn.preprocessing.data.OneHotEncoder’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)fit_transform: always make a new api; transform: must receive an api; None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = OneHotEncoder
<< track_header = True
<< func_method = None
<< dtype = <type'numpy.float64'>
<< categorical_features = all
<< n_values = auto
<< sparse = True
<< handle_unknown = error
>> id df
>> id api
>> id df
>> id api
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html#sklearn.preprocessing.OneHotEncoder
PCA
- task
- Prepare
- subtask
- feature transformation
- host
- sklearn
- function
- PCA
- input tokens (receivers)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s PCA classtypes: (“<class ‘sklearn.decomposition.pca.PCA’>”,)- output tokens (senders)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s PCA classtypes: (“<class ‘sklearn.decomposition.pca.PCA’>”,)- wrapper parameters
track_header
: Boolean, (default:False)Always False, the header of input dataframe is not equivalent with the transformed dataframechoose one of: Falsefunc_method
: string, (default:None)fit_transform: always make a new api; transform: must receive an api; inverse_transform: must receive an api; None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, ‘inverse_transform’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = PCA
<< track_header = False
<< func_method = None
<< svd_solver = auto
<< iterated_power = auto
<< random_state = None
<< whiten = False
<< tol = 0.0
<< copy = True
<< n_components = None
>> id df
>> id api
>> id df
>> id api
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA
PolynomialFeatures
- task
- Prepare
- subtask
- feature representation
- host
- sklearn
- function
- PolynomialFeatures
- input tokens (receivers)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s PolynomialFeatures classtypes: (“<class ‘sklearn.preprocessing.data.PolynomialFeatures’>”,)- output tokens (senders)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s PolynomialFeatures classtypes: (“<class ‘sklearn.preprocessing.data.PolynomialFeatures’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)fit_transform: always make a new api; transform: must receive an api; None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = PolynomialFeatures
<< track_header = True
<< func_method = None
<< include_bias = True
<< interaction_only = False
<< degree = 2
>> id df
>> id api
>> id df
>> id api
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html#sklearn.preprocessing.PolynomialFeatures
RobustScaler
- task
- Prepare
- subtask
- scaling
- host
- sklearn
- function
- RobustScaler
- input tokens (receivers)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s RobustScaler classtypes: (“<class ‘sklearn.preprocessing.data.RobustScaler’>”,)- output tokens (senders)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s RobustScaler classtypes: (“<class ‘sklearn.preprocessing.data.RobustScaler’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)fit_transform: always make a new api; transform: must receive an api; inverse_transform: must receive an api; None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, ‘inverse_transform’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = RobustScaler
<< track_header = True
<< func_method = None
<< copy = True
<< with_scaling = True
<< with_centering = True
<< quantile_range = (25.0, 75.0)
>> id df
>> id api
>> id df
>> id api
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html#sklearn.preprocessing.RobustScaler
ShuffleSplit
- task
- Prepare
- subtask
- split
- host
- sklearn
- function
- ShuffleSplit
- input tokens (receivers)
dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s ShuffleSplit classtypes: (“<class ‘sklearn.model_selection._split.ShuffleSplit’>”,)fold_gen
: Generator of indices to split data into training and test settypes: (“<type ‘generator’>”,)- wrapper parameters
func_method
: string, (default:None)choose one of: (‘split’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = ShuffleSplit
<< func_method = None
<< n_splits = 10
<< train_size = None
<< random_state = None
<< test_size = default
>> id dfx
>> id api
>> id fold_gen
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html#sklearn.model_selection.ShuffleSplit
StandardScaler
- task
- Prepare
- subtask
- scaling
- host
- sklearn
- function
- StandardScaler
- input tokens (receivers)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s StandardScaler classtypes: (“<class ‘sklearn.preprocessing.data.StandardScaler’>”,)- output tokens (senders)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s StandardScaler classtypes: (“<class ‘sklearn.preprocessing.data.StandardScaler’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)fit_transform: always make a new api; transform: must receive an api; inverse_transform: must receive an api; None: only make a new apichoose one of: (‘fit_transform’, ‘transform’, ‘inverse_transform’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = StandardScaler
<< track_header = True
<< func_method = None
<< copy = True
<< with_mean = True
<< with_std = True
>> id df
>> id api
>> id df
>> id api
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler
StratifiedShuffleSplit
- task
- Prepare
- subtask
- split
- host
- sklearn
- function
- StratifiedShuffleSplit
- input tokens (receivers)
dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s StratifiedShuffleSplit classtypes: (“<class ‘sklearn.model_selection._split.StratifiedShuffleSplit’>”,)fold_gen
: Generator of indices to split data into training and test settypes: (“<type ‘generator’>”,)- wrapper parameters
func_method
: string, (default:None)choose one of: (‘split’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = StratifiedShuffleSplit
<< func_method = None
<< n_splits = 10
<< train_size = None
<< random_state = None
<< test_size = default
>> id dfx
>> id api
>> id fold_gen
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.html#sklearn.model_selection.StratifiedShuffleSplit
train_test_split
- task
- Prepare
- subtask
- split
- host
- sklearn
- function
- train_test_split
- input tokens (receivers)
dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
dfx_test
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfy_train
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfy_test
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx_train
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = train_test_split
<< track_header = True
<< shuffle = True
<< train_size = None
<< random_state = None
<< test_size = 0.25
<< stratify = None
>> id dfy
>> id dfx
>> id dfx_test
>> id dfy_train
>> id dfy_test
>> id dfx_train
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
concat
- task
- Prepare
- subtask
- data manipulation
- host
- pandas
- function
- concat
- input tokens (receivers)
df1
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)df3
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)df2
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- required packages
- pandas, 0.20.3
- config file view
##
<< host = pandas << function = concat
<< join = outer
<< verify_integrity = False
<< keys = None
<< levels = None
<< ignore_index = False
<< names = None
<< join_axes = None
<< copy = True
<< axis = 0
>> id df1
>> id df3
>> id df2
>> id df
Note
The documentation page for function parameters: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.concat.html