MLP

task
Model
subtask
regression
host
chemml
function
MLP
input tokens (receivers)
api : instance of chemml.nn.keras.MLP class
types: (“<class ‘chemml.nn.keras.mlp.MLP’>”,)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
api : instance of chemml.nn.keras.MLP class
types: (“<class ‘chemml.nn.keras.mlp.MLP’>”,)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
func_method : string, (default:None)

choose one of: (‘fit’, ‘predict’, None)
required packages
ChemML, 0.4.1
keras, 2.1.2
tensorflow, 1.4.1
config file view
##
<< host = chemml    << function = MLP
<< func_method = None
<< nhidden = 1
<< loss = mean_squared_error
<< learning_rate = 0.01
<< layer_config_file = None
<< batch_size = 100
<< lr_decay = 0.0
<< regression = True
<< nclasses = None
<< activations = None
<< opt_config_file = None
<< nepochs = 100
<< nneurons = 100
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict

Note

The documentation page for function parameters:

MLP_sklearn

task
Model
subtask
regression
host
chemml
function
MLP_sklearn
input tokens (receivers)
api : instance of chemml.nn.keras.MLP_sklearn class
types: (“<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”,)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
api : instance of chemml.nn.keras.MLP_sklearn class
types: (“<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”,)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
func_method : string, (default:None)

choose one of: (‘fit’, ‘predict’, None)
required packages
ChemML, 0.4.1
scikit-learn, 0.19.0
keras, 2.1.2
tensorflow, 1.4.1
config file view
##
<< host = chemml    << function = MLP_sklearn
<< func_method = None
<< nhidden = 1
<< loss = mean_squared_error
<< learning_rate = 0.01
<< layer_config_file = None
<< batch_size = 100
<< lr_decay = 0.0
<< regression = True
<< nclasses = None
<< activations = None
<< opt_config_file = None
<< nepochs = 100
<< nneurons = 100
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict

Note

The documentation page for function parameters:

ARDRegression

task
Model
subtask
regression
host
sklearn
function
ARDRegression
input tokens (receivers)
api : instance of scikit-learn’s ARDRegression class
types: (“<class ‘sklearn.linear_model.bayes.ARDRegression’>”,)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
api : instance of scikit-learn’s ARDRegression class
types: (“<class ‘sklearn.linear_model.bayes.ARDRegression’>”,)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
func_method : string, (default:None)

choose one of: (‘fit’, ‘predict’, None)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = ARDRegression
<< track_header = True
<< func_method = None
<< normalize = False
<< n_iter = 300
<< verbose = False
<< lambda_2 = 1e-06
<< fit_intercept = True
<< threshold_lambda = 10000.0
<< compute_score = False
<< alpha_2 = 1e-06
<< tol = 0.001
<< alpha_1 = 1e-06
<< copy_X = True
<< lambda_1 = 1e-06
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict

BayesianRidge

task
Model
subtask
regression
host
sklearn
function
BayesianRidge
input tokens (receivers)
api : instance of scikit-learn’s BayesianRidge class
types: (“<class ‘sklearn.linear_model.bayes.BayesianRidge’>”,)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
api : instance of scikit-learn’s BayesianRidge class
types: (“<class ‘sklearn.linear_model.bayes.BayesianRidge’>”,)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
func_method : string, (default:None)

choose one of: (‘fit’, ‘predict’, None)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = BayesianRidge
<< track_header = True
<< func_method = None
<< normalize = False
<< n_iter = 300
<< verbose = False
<< lambda_2 = 1e-06
<< fit_intercept = True
<< compute_score = False
<< alpha_2 = 1e-06
<< tol = 0.001
<< alpha_1 = 1e-06
<< copy_X = True
<< lambda_1 = 1e-06
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict

ElasticNet

task
Model
subtask
regression
host
sklearn
function
ElasticNet
input tokens (receivers)
api : instance of scikit-learn’s ElasticNet class
types: (“<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”,)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
api : instance of scikit-learn’s ElasticNet class
types: (“<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”,)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
func_method : string, (default:None)

choose one of: (‘fit’, ‘predict’, None)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = ElasticNet
<< track_header = True
<< func_method = None
<< normalize = False
<< warm_start = False
<< selection = cyclic
<< fit_intercept = True
<< l1_ratio = 0.5
<< max_iter = 1000
<< precompute = False
<< random_state = None
<< tol = 0.0001
<< positive = False
<< copy_X = True
<< alpha = 1.0
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict

KernelRidge

task
Model
subtask
regression
host
sklearn
function
KernelRidge
input tokens (receivers)
api : instance of scikit-learn’s KernelRidge class
types: (“<class ‘sklearn.kernel_ridge.KernelRidge’>”,)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
api : instance of scikit-learn’s KernelRidge class
types: (“<class ‘sklearn.kernel_ridge.KernelRidge’>”,)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
func_method : string, (default:None)

choose one of: (‘fit’, ‘predict’, None)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = KernelRidge
<< track_header = True
<< func_method = None
<< kernel = linear
<< degree = 3
<< kernel_params = None
<< alpha = 1
<< coef0 = 1
<< gamma = None
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict

Lars

task
Model
subtask
regression
host
sklearn
function
Lars
input tokens (receivers)
api : instance of scikit-learn’s Lars class
types: (“<class ‘sklearn.linear_model.least_angle.Lars’>”,)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
api : instance of scikit-learn’s Lars class
types: (“<class ‘sklearn.linear_model.least_angle.Lars’>”,)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
func_method : string, (default:None)

choose one of: (‘fit’, ‘predict’, None)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = Lars
<< track_header = True
<< func_method = None
<< n_nonzero_coefs = 500
<< normalize = True
<< fit_path = True
<< fit_intercept = True
<< positive = False
<< eps = 2.22044604925e-16
<< precompute = auto
<< copy_X = True
<< verbose = False
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict

Note

The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lars.html

Lasso

task
Model
subtask
regression
host
sklearn
function
Lasso
input tokens (receivers)
api : instance of scikit-learn’s Lasso class
types: (“<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”,)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
api : instance of scikit-learn’s Lasso class
types: (“<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”,)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
func_method : string, (default:None)

choose one of: (‘fit’, ‘predict’, None)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = Lasso
<< track_header = True
<< func_method = None
<< normalize = False
<< warm_start = False
<< selection = cyclic
<< fit_intercept = True
<< positive = False
<< max_iter = 1000
<< precompute = False
<< random_state = None
<< tol = 0.0001
<< copy_X = True
<< alpha = 1.0
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict

Note

The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html

LassoLars

task
Model
subtask
regression
host
sklearn
function
LassoLars
input tokens (receivers)
api : instance of scikit-learn’s LassoLars class
types: (“<class ‘sklearn.linear_model.least_angle.LassoLars’>”,)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
api : instance of scikit-learn’s LassoLars class
types: (“<class ‘sklearn.linear_model.least_angle.LassoLars’>”,)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
func_method : string, (default:None)

choose one of: (‘fit’, ‘predict’, None)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = LassoLars
<< track_header = True
<< func_method = None
<< normalize = True
<< fit_path = True
<< fit_intercept = True
<< positive = False
<< max_iter = 500
<< eps = 2.22044604925e-16
<< precompute = auto
<< copy_X = True
<< alpha = 1.0
<< verbose = False
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict

LinearRegression

task
Model
subtask
regression
host
sklearn
function
LinearRegression
input tokens (receivers)
api : instance of scikit-learn’s LinearRegression class
types: (“<class ‘sklearn.linear_model.base.LinearRegression’>”,)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
api : instance of scikit-learn’s LinearRegression class
types: (“<class ‘sklearn.linear_model.base.LinearRegression’>”,)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
func_method : string, (default:None)

choose one of: (‘fit’, ‘predict’, None)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = LinearRegression
<< track_header = True
<< func_method = None
<< normalize = False
<< n_jobs = 1
<< fit_intercept = True
<< copy_X = True
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict

LinearSVR

task
Model
subtask
regression
host
sklearn
function
LinearSVR
input tokens (receivers)
api : instance of scikit-learn’s LinearSVR class
types: (“<class ‘sklearn.svm.classes.LinearSVR’>”,)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
api : instance of scikit-learn’s LinearSVR class
types: (“<class ‘sklearn.svm.classes.LinearSVR’>”,)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
func_method : string, (default:None)

choose one of: (‘fit’, ‘predict’, None)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = LinearSVR
<< track_header = True
<< func_method = None
<< loss = epsilon_insensitive
<< intercept_scaling = 1.0
<< fit_intercept = True
<< epsilon = 0.0
<< max_iter = 1000
<< C = 1.0
<< random_state = None
<< dual = True
<< tol = 0.0001
<< verbose = 0
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict

Note

The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html

LogisticRegression

task
Model
subtask
regression
host
sklearn
function
LogisticRegression
input tokens (receivers)
api : instance of scikit-learn’s LogisticRegression class
types: (“<class ‘sklearn.linear_model.logistic.LogisticRegression’>”,)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
api : instance of scikit-learn’s LogisticRegression class
types: (“<class ‘sklearn.linear_model.logistic.LogisticRegression’>”,)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
func_method : string, (default:None)

choose one of: (‘fit’, ‘predict’, None)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = LogisticRegression
<< track_header = True
<< func_method = None
<< warm_start = False
<< n_jobs = 1
<< intercept_scaling = 1
<< fit_intercept = True
<< max_iter = 100
<< class_weight = None
<< C = 1.0
<< penalty = l2
<< multi_class = ovr
<< random_state = None
<< dual = False
<< tol = 0.0001
<< solver = liblinear
<< verbose = 0
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict

MLPRegressor

task
Model
subtask
regression
host
sklearn
function
MLPRegressor
input tokens (receivers)
api : instance of scikit-learn’s MLPRegressor class
types: (“<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”,)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
api : instance of scikit-learn’s MLPRegressor class
types: (“<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”,)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
func_method : string, (default:None)

choose one of: (‘fit’, ‘predict’, None)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = MLPRegressor
<< track_header = True
<< func_method = None
<< shuffle = True
<< verbose = False
<< random_state = None
<< tol = 0.0001
<< validation_fraction = 0.1
<< learning_rate = constant
<< momentum = 0.9
<< warm_start = False
<< epsilon = 1e-08
<< activation = relu
<< max_iter = 200
<< batch_size = auto
<< alpha = 0.0001
<< early_stopping = False
<< beta_1 = 0.9
<< beta_2 = 0.999
<< nesterovs_momentum = True
<< hidden_layer_sizes = (100,)
<< solver = adam
<< power_t = 0.5
<< learning_rate_init = 0.001
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict

MultiTaskElasticNet

task
Model
subtask
regression
host
sklearn
function
MultiTaskElasticNet
input tokens (receivers)
api : instance of scikit-learn’s MultiTaskElasticNet class
types: (“<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”,)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
api : instance of scikit-learn’s MultiTaskElasticNet class
types: (“<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”,)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
func_method : string, (default:None)

choose one of: (‘fit’, ‘predict’, None)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = MultiTaskElasticNet
<< track_header = True
<< func_method = None
<< normalize = False
<< warm_start = False
<< selection = cyclic
<< fit_intercept = True
<< l1_ratio = 0.5
<< max_iter = 1000
<< random_state = None
<< tol = 0.0001
<< copy_X = True
<< alpha = 1.0
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict

MultiTaskLasso

task
Model
subtask
regression
host
sklearn
function
MultiTaskLasso
input tokens (receivers)
api : instance of scikit-learn’s MultiTaskLasso class
types: (“<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”,)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
api : instance of scikit-learn’s MultiTaskLasso class
types: (“<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”,)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
func_method : string, (default:None)

choose one of: (‘fit’, ‘predict’, None)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = MultiTaskLasso
<< track_header = True
<< func_method = None
<< normalize = False
<< warm_start = False
<< selection = cyclic
<< fit_intercept = True
<< max_iter = 1000
<< random_state = None
<< tol = 0.0001
<< copy_X = True
<< alpha = 1.0
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict

NuSVR

task
Model
subtask
regression
host
sklearn
function
NuSVR
input tokens (receivers)
api : instance of scikit-learn’s NuSVR class
types: (“<class ‘sklearn.svm.classes.NuSVR’>”,)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
api : instance of scikit-learn’s NuSVR class
types: (“<class ‘sklearn.svm.classes.NuSVR’>”,)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
func_method : string, (default:None)

choose one of: (‘fit’, ‘predict’, None)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = NuSVR
<< track_header = True
<< func_method = None
<< kernel = rbf
<< verbose = False
<< degree = 3
<< coef0 = 0.0
<< max_iter = -1
<< C = 1.0
<< tol = 0.001
<< cache_size = 200
<< shrinking = True
<< nu = 0.5
<< gamma = auto
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict

Note

The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVR.html

Ridge

task
Model
subtask
regression
host
sklearn
function
Ridge
input tokens (receivers)
api : instance of scikit-learn’s Ridge class
types: (“<class ‘sklearn.linear_model.ridge.Ridge’>”,)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
api : instance of scikit-learn’s Ridge class
types: (“<class ‘sklearn.linear_model.ridge.Ridge’>”,)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
func_method : string, (default:None)

choose one of: (‘fit’, ‘predict’, None)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = Ridge
<< track_header = True
<< func_method = None
<< normalize = False
<< fit_intercept = True
<< max_iter = None
<< random_state = None
<< tol = 0.001
<< copy_X = True
<< alpha = 1.0
<< solver = auto
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict

Note

The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html

SGDRegressor

task
Model
subtask
regression
host
sklearn
function
SGDRegressor
input tokens (receivers)
api : instance of scikit-learn’s SGDRegressor class
types: (“<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”,)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
api : instance of scikit-learn’s SGDRegressor class
types: (“<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”,)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
func_method : string, (default:None)

choose one of: (‘fit’, ‘predict’, None)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = SGDRegressor
<< track_header = True
<< func_method = None
<< warm_start = False
<< loss = squared_loss
<< eta0 = 0.01
<< verbose = 0
<< fit_intercept = True
<< l1_ratio = 0.15
<< average = False
<< n_iter = 5
<< penalty = l2
<< power_t = 0.25
<< alpha = 0.0001
<< random_state = None
<< epsilon = 0.1
<< shuffle = True
<< learning_rate = invscaling
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict

SVR

task
Model
subtask
regression
host
sklearn
function
SVR
input tokens (receivers)
api : instance of scikit-learn’s SVR class
types: (“<class ‘sklearn.svm.classes.SVR’>”,)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
api : instance of scikit-learn’s SVR class
types: (“<class ‘sklearn.svm.classes.SVR’>”,)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
func_method : string, (default:None)

choose one of: (‘fit’, ‘predict’, None)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = SVR
<< track_header = True
<< func_method = None
<< kernel = rbf
<< verbose = False
<< degree = 3
<< coef0 = 0.0
<< epsilon = 0.1
<< max_iter = -1
<< C = 1.0
<< tol = 0.001
<< cache_size = 200
<< shrinking = True
<< gamma = auto
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict

Note

The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html