MLP
- task:
- Model
- subtask:
- regression
- host:
- chemml
- function:
- MLP
- input tokens (receivers):
api: instance of chemml.nn.keras.MLP classtypes: (“<class ‘chemml.nn.keras.mlp.MLP’>”,)dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of chemml.nn.keras.MLP classtypes: (“<class ‘chemml.nn.keras.mlp.MLP’>”,)dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
func_method: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages:
- ChemML, 0.4.1keras, 2.1.2tensorflow, 1.4.1
- config file view:
##<< host = chemml << function = MLP<< func_method = None<< nhidden = 1<< loss = mean_squared_error<< learning_rate = 0.01<< layer_config_file = None<< batch_size = 100<< lr_decay = 0.0<< regression = True<< nclasses = None<< activations = None<< opt_config_file = None<< nepochs = 100<< nneurons = 100>> id api>> id dfy>> id dfx>> id api>> id dfy_predictNote
The documentation page for function parameters:
MLP_sklearn
- task:
- Model
- subtask:
- regression
- host:
- chemml
- function:
- MLP_sklearn
- input tokens (receivers):
api: instance of chemml.nn.keras.MLP_sklearn classtypes: (“<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”,)dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of chemml.nn.keras.MLP_sklearn classtypes: (“<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”,)dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
func_method: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages:
- ChemML, 0.4.1scikit-learn, 0.19.0keras, 2.1.2tensorflow, 1.4.1
- config file view:
##<< host = chemml << function = MLP_sklearn<< func_method = None<< nhidden = 1<< loss = mean_squared_error<< learning_rate = 0.01<< layer_config_file = None<< batch_size = 100<< lr_decay = 0.0<< regression = True<< nclasses = None<< activations = None<< opt_config_file = None<< nepochs = 100<< nneurons = 100>> id api>> id dfy>> id dfx>> id api>> id dfy_predictNote
The documentation page for function parameters:
ARDRegression
- task:
- Model
- subtask:
- regression
- host:
- sklearn
- function:
- ARDRegression
- input tokens (receivers):
api: instance of scikit-learn’s ARDRegression classtypes: (“<class ‘sklearn.linear_model.bayes.ARDRegression’>”,)dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s ARDRegression classtypes: (“<class ‘sklearn.linear_model.bayes.ARDRegression’>”,)dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = ARDRegression<< track_header = True<< func_method = None<< normalize = False<< n_iter = 300<< verbose = False<< lambda_2 = 1e-06<< fit_intercept = True<< threshold_lambda = 10000.0<< compute_score = False<< alpha_2 = 1e-06<< tol = 0.001<< alpha_1 = 1e-06<< copy_X = True<< lambda_1 = 1e-06>> id api>> id dfy>> id dfx>> id api>> id dfy_predictNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ARDRegression.html
BayesianRidge
- task:
- Model
- subtask:
- regression
- host:
- sklearn
- function:
- BayesianRidge
- input tokens (receivers):
api: instance of scikit-learn’s BayesianRidge classtypes: (“<class ‘sklearn.linear_model.bayes.BayesianRidge’>”,)dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s BayesianRidge classtypes: (“<class ‘sklearn.linear_model.bayes.BayesianRidge’>”,)dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = BayesianRidge<< track_header = True<< func_method = None<< normalize = False<< n_iter = 300<< verbose = False<< lambda_2 = 1e-06<< fit_intercept = True<< compute_score = False<< alpha_2 = 1e-06<< tol = 0.001<< alpha_1 = 1e-06<< copy_X = True<< lambda_1 = 1e-06>> id api>> id dfy>> id dfx>> id api>> id dfy_predictNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html
ElasticNet
- task:
- Model
- subtask:
- regression
- host:
- sklearn
- function:
- ElasticNet
- input tokens (receivers):
api: instance of scikit-learn’s ElasticNet classtypes: (“<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”,)dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s ElasticNet classtypes: (“<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”,)dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = ElasticNet<< track_header = True<< func_method = None<< normalize = False<< warm_start = False<< selection = cyclic<< fit_intercept = True<< l1_ratio = 0.5<< max_iter = 1000<< precompute = False<< random_state = None<< tol = 0.0001<< positive = False<< copy_X = True<< alpha = 1.0>> id api>> id dfy>> id dfx>> id api>> id dfy_predictNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html
KernelRidge
- task:
- Model
- subtask:
- regression
- host:
- sklearn
- function:
- KernelRidge
- input tokens (receivers):
api: instance of scikit-learn’s KernelRidge classtypes: (“<class ‘sklearn.kernel_ridge.KernelRidge’>”,)dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s KernelRidge classtypes: (“<class ‘sklearn.kernel_ridge.KernelRidge’>”,)dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = KernelRidge<< track_header = True<< func_method = None<< kernel = linear<< degree = 3<< kernel_params = None<< alpha = 1<< coef0 = 1<< gamma = None>> id api>> id dfy>> id dfx>> id api>> id dfy_predictNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.kernel_ridge.KernelRidge.html
Lars
- task:
- Model
- subtask:
- regression
- host:
- sklearn
- function:
- Lars
- input tokens (receivers):
api: instance of scikit-learn’s Lars classtypes: (“<class ‘sklearn.linear_model.least_angle.Lars’>”,)dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s Lars classtypes: (“<class ‘sklearn.linear_model.least_angle.Lars’>”,)dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = Lars<< track_header = True<< func_method = None<< n_nonzero_coefs = 500<< normalize = True<< fit_path = True<< fit_intercept = True<< positive = False<< eps = 2.22044604925e-16<< precompute = auto<< copy_X = True<< verbose = False>> id api>> id dfy>> id dfx>> id api>> id dfy_predictNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lars.html
Lasso
- task:
- Model
- subtask:
- regression
- host:
- sklearn
- function:
- Lasso
- input tokens (receivers):
api: instance of scikit-learn’s Lasso classtypes: (“<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”,)dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s Lasso classtypes: (“<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”,)dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = Lasso<< track_header = True<< func_method = None<< normalize = False<< warm_start = False<< selection = cyclic<< fit_intercept = True<< positive = False<< max_iter = 1000<< precompute = False<< random_state = None<< tol = 0.0001<< copy_X = True<< alpha = 1.0>> id api>> id dfy>> id dfx>> id api>> id dfy_predictNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
LassoLars
- task:
- Model
- subtask:
- regression
- host:
- sklearn
- function:
- LassoLars
- input tokens (receivers):
api: instance of scikit-learn’s LassoLars classtypes: (“<class ‘sklearn.linear_model.least_angle.LassoLars’>”,)dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s LassoLars classtypes: (“<class ‘sklearn.linear_model.least_angle.LassoLars’>”,)dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = LassoLars<< track_header = True<< func_method = None<< normalize = True<< fit_path = True<< fit_intercept = True<< positive = False<< max_iter = 500<< eps = 2.22044604925e-16<< precompute = auto<< copy_X = True<< alpha = 1.0<< verbose = False>> id api>> id dfy>> id dfx>> id api>> id dfy_predictNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLars.html
LinearRegression
- task:
- Model
- subtask:
- regression
- host:
- sklearn
- function:
- LinearRegression
- input tokens (receivers):
api: instance of scikit-learn’s LinearRegression classtypes: (“<class ‘sklearn.linear_model.base.LinearRegression’>”,)dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s LinearRegression classtypes: (“<class ‘sklearn.linear_model.base.LinearRegression’>”,)dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = LinearRegression<< track_header = True<< func_method = None<< normalize = False<< n_jobs = 1<< fit_intercept = True<< copy_X = True>> id api>> id dfy>> id dfx>> id api>> id dfy_predictNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
LinearSVR
- task:
- Model
- subtask:
- regression
- host:
- sklearn
- function:
- LinearSVR
- input tokens (receivers):
api: instance of scikit-learn’s LinearSVR classtypes: (“<class ‘sklearn.svm.classes.LinearSVR’>”,)dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s LinearSVR classtypes: (“<class ‘sklearn.svm.classes.LinearSVR’>”,)dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = LinearSVR<< track_header = True<< func_method = None<< loss = epsilon_insensitive<< intercept_scaling = 1.0<< fit_intercept = True<< epsilon = 0.0<< max_iter = 1000<< C = 1.0<< random_state = None<< dual = True<< tol = 0.0001<< verbose = 0>> id api>> id dfy>> id dfx>> id api>> id dfy_predictNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html
LogisticRegression
- task:
- Model
- subtask:
- regression
- host:
- sklearn
- function:
- LogisticRegression
- input tokens (receivers):
api: instance of scikit-learn’s LogisticRegression classtypes: (“<class ‘sklearn.linear_model.logistic.LogisticRegression’>”,)dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s LogisticRegression classtypes: (“<class ‘sklearn.linear_model.logistic.LogisticRegression’>”,)dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = LogisticRegression<< track_header = True<< func_method = None<< warm_start = False<< n_jobs = 1<< intercept_scaling = 1<< fit_intercept = True<< max_iter = 100<< class_weight = None<< C = 1.0<< penalty = l2<< multi_class = ovr<< random_state = None<< dual = False<< tol = 0.0001<< solver = liblinear<< verbose = 0>> id api>> id dfy>> id dfx>> id api>> id dfy_predictNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
MLPRegressor
- task:
- Model
- subtask:
- regression
- host:
- sklearn
- function:
- MLPRegressor
- input tokens (receivers):
api: instance of scikit-learn’s MLPRegressor classtypes: (“<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”,)dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s MLPRegressor classtypes: (“<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”,)dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = MLPRegressor<< track_header = True<< func_method = None<< shuffle = True<< verbose = False<< random_state = None<< tol = 0.0001<< validation_fraction = 0.1<< learning_rate = constant<< momentum = 0.9<< warm_start = False<< epsilon = 1e-08<< activation = relu<< max_iter = 200<< batch_size = auto<< alpha = 0.0001<< early_stopping = False<< beta_1 = 0.9<< beta_2 = 0.999<< nesterovs_momentum = True<< hidden_layer_sizes = (100,)<< solver = adam<< power_t = 0.5<< learning_rate_init = 0.001>> id api>> id dfy>> id dfx>> id api>> id dfy_predictNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor
MultiTaskElasticNet
- task:
- Model
- subtask:
- regression
- host:
- sklearn
- function:
- MultiTaskElasticNet
- input tokens (receivers):
api: instance of scikit-learn’s MultiTaskElasticNet classtypes: (“<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”,)dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s MultiTaskElasticNet classtypes: (“<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”,)dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = MultiTaskElasticNet<< track_header = True<< func_method = None<< normalize = False<< warm_start = False<< selection = cyclic<< fit_intercept = True<< l1_ratio = 0.5<< max_iter = 1000<< random_state = None<< tol = 0.0001<< copy_X = True<< alpha = 1.0>> id api>> id dfy>> id dfx>> id api>> id dfy_predictNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskElasticNet.html
MultiTaskLasso
- task:
- Model
- subtask:
- regression
- host:
- sklearn
- function:
- MultiTaskLasso
- input tokens (receivers):
api: instance of scikit-learn’s MultiTaskLasso classtypes: (“<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”,)dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s MultiTaskLasso classtypes: (“<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”,)dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = MultiTaskLasso<< track_header = True<< func_method = None<< normalize = False<< warm_start = False<< selection = cyclic<< fit_intercept = True<< max_iter = 1000<< random_state = None<< tol = 0.0001<< copy_X = True<< alpha = 1.0>> id api>> id dfy>> id dfx>> id api>> id dfy_predictNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskLasso.html
NuSVR
- task:
- Model
- subtask:
- regression
- host:
- sklearn
- function:
- NuSVR
- input tokens (receivers):
api: instance of scikit-learn’s NuSVR classtypes: (“<class ‘sklearn.svm.classes.NuSVR’>”,)dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s NuSVR classtypes: (“<class ‘sklearn.svm.classes.NuSVR’>”,)dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = NuSVR<< track_header = True<< func_method = None<< kernel = rbf<< verbose = False<< degree = 3<< coef0 = 0.0<< max_iter = -1<< C = 1.0<< tol = 0.001<< cache_size = 200<< shrinking = True<< nu = 0.5<< gamma = auto>> id api>> id dfy>> id dfx>> id api>> id dfy_predictNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVR.html
Ridge
- task:
- Model
- subtask:
- regression
- host:
- sklearn
- function:
- Ridge
- input tokens (receivers):
api: instance of scikit-learn’s Ridge classtypes: (“<class ‘sklearn.linear_model.ridge.Ridge’>”,)dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s Ridge classtypes: (“<class ‘sklearn.linear_model.ridge.Ridge’>”,)dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = Ridge<< track_header = True<< func_method = None<< normalize = False<< fit_intercept = True<< max_iter = None<< random_state = None<< tol = 0.001<< copy_X = True<< alpha = 1.0<< solver = auto>> id api>> id dfy>> id dfx>> id api>> id dfy_predictNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
SGDRegressor
- task:
- Model
- subtask:
- regression
- host:
- sklearn
- function:
- SGDRegressor
- input tokens (receivers):
api: instance of scikit-learn’s SGDRegressor classtypes: (“<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”,)dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s SGDRegressor classtypes: (“<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”,)dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = SGDRegressor<< track_header = True<< func_method = None<< warm_start = False<< loss = squared_loss<< eta0 = 0.01<< verbose = 0<< fit_intercept = True<< l1_ratio = 0.15<< average = False<< n_iter = 5<< penalty = l2<< power_t = 0.25<< alpha = 0.0001<< random_state = None<< epsilon = 0.1<< shuffle = True<< learning_rate = invscaling>> id api>> id dfy>> id dfx>> id api>> id dfy_predictNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html
SVR
- task:
- Model
- subtask:
- regression
- host:
- sklearn
- function:
- SVR
- input tokens (receivers):
api: instance of scikit-learn’s SVR classtypes: (“<class ‘sklearn.svm.classes.SVR’>”,)dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
api: instance of scikit-learn’s SVR classtypes: (“<class ‘sklearn.svm.classes.SVR’>”,)dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = SVR<< track_header = True<< func_method = None<< kernel = rbf<< verbose = False<< degree = 3<< coef0 = 0.0<< epsilon = 0.1<< max_iter = -1<< C = 1.0<< tol = 0.001<< cache_size = 200<< shrinking = True<< gamma = auto>> id api>> id dfy>> id dfx>> id api>> id dfy_predictNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html