MLP
- task
- Model
- subtask
- regression
- host
- chemml
- function
- MLP
- input tokens (receivers)
api
: instance of chemml.nn.keras.MLP classtypes: (“<class ‘chemml.nn.keras.mlp.MLP’>”,)dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of chemml.nn.keras.MLP classtypes: (“<class ‘chemml.nn.keras.mlp.MLP’>”,)dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
func_method
: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages
- ChemML, 0.4.1keras, 2.1.2tensorflow, 1.4.1
- config file view
##
<< host = chemml << function = MLP
<< func_method = None
<< nhidden = 1
<< loss = mean_squared_error
<< learning_rate = 0.01
<< layer_config_file = None
<< batch_size = 100
<< lr_decay = 0.0
<< regression = True
<< nclasses = None
<< activations = None
<< opt_config_file = None
<< nepochs = 100
<< nneurons = 100
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict
Note
The documentation page for function parameters:
MLP_sklearn
- task
- Model
- subtask
- regression
- host
- chemml
- function
- MLP_sklearn
- input tokens (receivers)
api
: instance of chemml.nn.keras.MLP_sklearn classtypes: (“<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”,)dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of chemml.nn.keras.MLP_sklearn classtypes: (“<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”,)dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
func_method
: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages
- ChemML, 0.4.1scikit-learn, 0.19.0keras, 2.1.2tensorflow, 1.4.1
- config file view
##
<< host = chemml << function = MLP_sklearn
<< func_method = None
<< nhidden = 1
<< loss = mean_squared_error
<< learning_rate = 0.01
<< layer_config_file = None
<< batch_size = 100
<< lr_decay = 0.0
<< regression = True
<< nclasses = None
<< activations = None
<< opt_config_file = None
<< nepochs = 100
<< nneurons = 100
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict
Note
The documentation page for function parameters:
ARDRegression
- task
- Model
- subtask
- regression
- host
- sklearn
- function
- ARDRegression
- input tokens (receivers)
api
: instance of scikit-learn’s ARDRegression classtypes: (“<class ‘sklearn.linear_model.bayes.ARDRegression’>”,)dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s ARDRegression classtypes: (“<class ‘sklearn.linear_model.bayes.ARDRegression’>”,)dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = ARDRegression
<< track_header = True
<< func_method = None
<< normalize = False
<< n_iter = 300
<< verbose = False
<< lambda_2 = 1e-06
<< fit_intercept = True
<< threshold_lambda = 10000.0
<< compute_score = False
<< alpha_2 = 1e-06
<< tol = 0.001
<< alpha_1 = 1e-06
<< copy_X = True
<< lambda_1 = 1e-06
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ARDRegression.html
BayesianRidge
- task
- Model
- subtask
- regression
- host
- sklearn
- function
- BayesianRidge
- input tokens (receivers)
api
: instance of scikit-learn’s BayesianRidge classtypes: (“<class ‘sklearn.linear_model.bayes.BayesianRidge’>”,)dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s BayesianRidge classtypes: (“<class ‘sklearn.linear_model.bayes.BayesianRidge’>”,)dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = BayesianRidge
<< track_header = True
<< func_method = None
<< normalize = False
<< n_iter = 300
<< verbose = False
<< lambda_2 = 1e-06
<< fit_intercept = True
<< compute_score = False
<< alpha_2 = 1e-06
<< tol = 0.001
<< alpha_1 = 1e-06
<< copy_X = True
<< lambda_1 = 1e-06
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html
ElasticNet
- task
- Model
- subtask
- regression
- host
- sklearn
- function
- ElasticNet
- input tokens (receivers)
api
: instance of scikit-learn’s ElasticNet classtypes: (“<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”,)dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s ElasticNet classtypes: (“<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”,)dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = ElasticNet
<< track_header = True
<< func_method = None
<< normalize = False
<< warm_start = False
<< selection = cyclic
<< fit_intercept = True
<< l1_ratio = 0.5
<< max_iter = 1000
<< precompute = False
<< random_state = None
<< tol = 0.0001
<< positive = False
<< copy_X = True
<< alpha = 1.0
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html
KernelRidge
- task
- Model
- subtask
- regression
- host
- sklearn
- function
- KernelRidge
- input tokens (receivers)
api
: instance of scikit-learn’s KernelRidge classtypes: (“<class ‘sklearn.kernel_ridge.KernelRidge’>”,)dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s KernelRidge classtypes: (“<class ‘sklearn.kernel_ridge.KernelRidge’>”,)dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = KernelRidge
<< track_header = True
<< func_method = None
<< kernel = linear
<< degree = 3
<< kernel_params = None
<< alpha = 1
<< coef0 = 1
<< gamma = None
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.kernel_ridge.KernelRidge.html
Lars
- task
- Model
- subtask
- regression
- host
- sklearn
- function
- Lars
- input tokens (receivers)
api
: instance of scikit-learn’s Lars classtypes: (“<class ‘sklearn.linear_model.least_angle.Lars’>”,)dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s Lars classtypes: (“<class ‘sklearn.linear_model.least_angle.Lars’>”,)dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = Lars
<< track_header = True
<< func_method = None
<< n_nonzero_coefs = 500
<< normalize = True
<< fit_path = True
<< fit_intercept = True
<< positive = False
<< eps = 2.22044604925e-16
<< precompute = auto
<< copy_X = True
<< verbose = False
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lars.html
Lasso
- task
- Model
- subtask
- regression
- host
- sklearn
- function
- Lasso
- input tokens (receivers)
api
: instance of scikit-learn’s Lasso classtypes: (“<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”,)dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s Lasso classtypes: (“<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”,)dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = Lasso
<< track_header = True
<< func_method = None
<< normalize = False
<< warm_start = False
<< selection = cyclic
<< fit_intercept = True
<< positive = False
<< max_iter = 1000
<< precompute = False
<< random_state = None
<< tol = 0.0001
<< copy_X = True
<< alpha = 1.0
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
LassoLars
- task
- Model
- subtask
- regression
- host
- sklearn
- function
- LassoLars
- input tokens (receivers)
api
: instance of scikit-learn’s LassoLars classtypes: (“<class ‘sklearn.linear_model.least_angle.LassoLars’>”,)dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s LassoLars classtypes: (“<class ‘sklearn.linear_model.least_angle.LassoLars’>”,)dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = LassoLars
<< track_header = True
<< func_method = None
<< normalize = True
<< fit_path = True
<< fit_intercept = True
<< positive = False
<< max_iter = 500
<< eps = 2.22044604925e-16
<< precompute = auto
<< copy_X = True
<< alpha = 1.0
<< verbose = False
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLars.html
LinearRegression
- task
- Model
- subtask
- regression
- host
- sklearn
- function
- LinearRegression
- input tokens (receivers)
api
: instance of scikit-learn’s LinearRegression classtypes: (“<class ‘sklearn.linear_model.base.LinearRegression’>”,)dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s LinearRegression classtypes: (“<class ‘sklearn.linear_model.base.LinearRegression’>”,)dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = LinearRegression
<< track_header = True
<< func_method = None
<< normalize = False
<< n_jobs = 1
<< fit_intercept = True
<< copy_X = True
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
LinearSVR
- task
- Model
- subtask
- regression
- host
- sklearn
- function
- LinearSVR
- input tokens (receivers)
api
: instance of scikit-learn’s LinearSVR classtypes: (“<class ‘sklearn.svm.classes.LinearSVR’>”,)dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s LinearSVR classtypes: (“<class ‘sklearn.svm.classes.LinearSVR’>”,)dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = LinearSVR
<< track_header = True
<< func_method = None
<< loss = epsilon_insensitive
<< intercept_scaling = 1.0
<< fit_intercept = True
<< epsilon = 0.0
<< max_iter = 1000
<< C = 1.0
<< random_state = None
<< dual = True
<< tol = 0.0001
<< verbose = 0
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html
LogisticRegression
- task
- Model
- subtask
- regression
- host
- sklearn
- function
- LogisticRegression
- input tokens (receivers)
api
: instance of scikit-learn’s LogisticRegression classtypes: (“<class ‘sklearn.linear_model.logistic.LogisticRegression’>”,)dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s LogisticRegression classtypes: (“<class ‘sklearn.linear_model.logistic.LogisticRegression’>”,)dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = LogisticRegression
<< track_header = True
<< func_method = None
<< warm_start = False
<< n_jobs = 1
<< intercept_scaling = 1
<< fit_intercept = True
<< max_iter = 100
<< class_weight = None
<< C = 1.0
<< penalty = l2
<< multi_class = ovr
<< random_state = None
<< dual = False
<< tol = 0.0001
<< solver = liblinear
<< verbose = 0
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
MLPRegressor
- task
- Model
- subtask
- regression
- host
- sklearn
- function
- MLPRegressor
- input tokens (receivers)
api
: instance of scikit-learn’s MLPRegressor classtypes: (“<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”,)dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s MLPRegressor classtypes: (“<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”,)dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = MLPRegressor
<< track_header = True
<< func_method = None
<< shuffle = True
<< verbose = False
<< random_state = None
<< tol = 0.0001
<< validation_fraction = 0.1
<< learning_rate = constant
<< momentum = 0.9
<< warm_start = False
<< epsilon = 1e-08
<< activation = relu
<< max_iter = 200
<< batch_size = auto
<< alpha = 0.0001
<< early_stopping = False
<< beta_1 = 0.9
<< beta_2 = 0.999
<< nesterovs_momentum = True
<< hidden_layer_sizes = (100,)
<< solver = adam
<< power_t = 0.5
<< learning_rate_init = 0.001
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor
MultiTaskElasticNet
- task
- Model
- subtask
- regression
- host
- sklearn
- function
- MultiTaskElasticNet
- input tokens (receivers)
api
: instance of scikit-learn’s MultiTaskElasticNet classtypes: (“<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”,)dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s MultiTaskElasticNet classtypes: (“<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”,)dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = MultiTaskElasticNet
<< track_header = True
<< func_method = None
<< normalize = False
<< warm_start = False
<< selection = cyclic
<< fit_intercept = True
<< l1_ratio = 0.5
<< max_iter = 1000
<< random_state = None
<< tol = 0.0001
<< copy_X = True
<< alpha = 1.0
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskElasticNet.html
MultiTaskLasso
- task
- Model
- subtask
- regression
- host
- sklearn
- function
- MultiTaskLasso
- input tokens (receivers)
api
: instance of scikit-learn’s MultiTaskLasso classtypes: (“<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”,)dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s MultiTaskLasso classtypes: (“<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”,)dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = MultiTaskLasso
<< track_header = True
<< func_method = None
<< normalize = False
<< warm_start = False
<< selection = cyclic
<< fit_intercept = True
<< max_iter = 1000
<< random_state = None
<< tol = 0.0001
<< copy_X = True
<< alpha = 1.0
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskLasso.html
NuSVR
- task
- Model
- subtask
- regression
- host
- sklearn
- function
- NuSVR
- input tokens (receivers)
api
: instance of scikit-learn’s NuSVR classtypes: (“<class ‘sklearn.svm.classes.NuSVR’>”,)dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s NuSVR classtypes: (“<class ‘sklearn.svm.classes.NuSVR’>”,)dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = NuSVR
<< track_header = True
<< func_method = None
<< kernel = rbf
<< verbose = False
<< degree = 3
<< coef0 = 0.0
<< max_iter = -1
<< C = 1.0
<< tol = 0.001
<< cache_size = 200
<< shrinking = True
<< nu = 0.5
<< gamma = auto
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVR.html
Ridge
- task
- Model
- subtask
- regression
- host
- sklearn
- function
- Ridge
- input tokens (receivers)
api
: instance of scikit-learn’s Ridge classtypes: (“<class ‘sklearn.linear_model.ridge.Ridge’>”,)dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s Ridge classtypes: (“<class ‘sklearn.linear_model.ridge.Ridge’>”,)dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = Ridge
<< track_header = True
<< func_method = None
<< normalize = False
<< fit_intercept = True
<< max_iter = None
<< random_state = None
<< tol = 0.001
<< copy_X = True
<< alpha = 1.0
<< solver = auto
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
SGDRegressor
- task
- Model
- subtask
- regression
- host
- sklearn
- function
- SGDRegressor
- input tokens (receivers)
api
: instance of scikit-learn’s SGDRegressor classtypes: (“<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”,)dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s SGDRegressor classtypes: (“<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”,)dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = SGDRegressor
<< track_header = True
<< func_method = None
<< warm_start = False
<< loss = squared_loss
<< eta0 = 0.01
<< verbose = 0
<< fit_intercept = True
<< l1_ratio = 0.15
<< average = False
<< n_iter = 5
<< penalty = l2
<< power_t = 0.25
<< alpha = 0.0001
<< random_state = None
<< epsilon = 0.1
<< shuffle = True
<< learning_rate = invscaling
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html
SVR
- task
- Model
- subtask
- regression
- host
- sklearn
- function
- SVR
- input tokens (receivers)
api
: instance of scikit-learn’s SVR classtypes: (“<class ‘sklearn.svm.classes.SVR’>”,)dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
api
: instance of scikit-learn’s SVR classtypes: (“<class ‘sklearn.svm.classes.SVR’>”,)dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)func_method
: string, (default:None)choose one of: (‘fit’, ‘predict’, None)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = SVR
<< track_header = True
<< func_method = None
<< kernel = rbf
<< verbose = False
<< degree = 3
<< coef0 = 0.0
<< epsilon = 0.1
<< max_iter = -1
<< C = 1.0
<< tol = 0.001
<< cache_size = 200
<< shrinking = True
<< gamma = auto
>> id api
>> id dfy
>> id dfx
>> id api
>> id dfy_predict
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html