GridSearchCV
- task
- Search
- subtask
- grid
- host
- sklearn
- function
- GridSearchCV
- input tokens (receivers)
dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)estimator
: instance of a machine learning classtypes: (“<type ‘str’>”, “<class ‘sklearn.linear_model.base.LinearRegression’>”, “<class ‘sklearn.linear_model.ridge.Ridge’>”, “<class ‘sklearn.kernel_ridge.KernelRidge’>”, “<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”, “<class ‘sklearn.linear_model.least_angle.Lars’>”, “<class ‘sklearn.linear_model.least_angle.LassoLars’>”, “<class ‘sklearn.linear_model.bayes.BayesianRidge’>”, “<class ‘sklearn.linear_model.bayes.ARDRegression’>”, “<class ‘sklearn.linear_model.logistic.LogisticRegression’>”, “<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”, “<class ‘sklearn.svm.classes.SVR’>”, “<class ‘sklearn.svm.classes.NuSVR’>”, “<class ‘sklearn.svm.classes.LinearSVR’>”, “<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”, “<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”)scorer
: instance of scikit-learn’s make_scorer classtypes: (“<class ‘sklearn.metrics.scorer._PredictScorer’>”,)cv
: instance of scikit-learn’s cross validation generator or instance objecttypes: (“<type ‘generator’>”, “<class ‘sklearn.model_selection._split.KFold’>”, “<class ‘sklearn.model_selection._split.ShuffleSplit’>”, “<class ‘sklearn.model_selection._split.StratifiedShuffleSplit’>”, “<class ‘sklearn.model_selection._split.LeaveOneOut’>”)- output tokens (senders)
cv_results_
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api
: instance of scikit-learn’s GridSearchCV classtypes: (“<class ‘sklearn.grid_search.GridSearchCV’>”,)best_estimator_
: instance of a machine learning classtypes: (“<class ‘sklearn.linear_model.base.LinearRegression’>”, “<class ‘sklearn.linear_model.ridge.Ridge’>”, “<class ‘sklearn.kernel_ridge.KernelRidge’>”, “<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”, “<class ‘sklearn.linear_model.least_angle.Lars’>”, “<class ‘sklearn.linear_model.least_angle.LassoLars’>”, “<class ‘sklearn.linear_model.bayes.BayesianRidge’>”, “<class ‘sklearn.linear_model.bayes.ARDRegression’>”, “<class ‘sklearn.linear_model.logistic.LogisticRegression’>”, “<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”, “<class ‘sklearn.svm.classes.SVR’>”, “<class ‘sklearn.svm.classes.NuSVR’>”, “<class ‘sklearn.svm.classes.LinearSVR’>”, “<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”, “<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = GridSearchCV
<< track_header = True
<< scoring = None
<< n_jobs = 1
<< verbose = 0
<< fit_params = None
<< refit = True
<< return_train_score = True
<< iid = True
<< estimator = @estimator
<< error_score = raise
<< pre_dispatch = 2 * n_jobs
<< param_grid = {}
<< cv = None
>> id dfy
>> id dfx
>> id estimator
>> id scorer
>> id cv
>> id cv_results_
>> id api
>> id best_estimator_
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
cross_val_predict
- task
- Search
- subtask
- validate
- host
- sklearn
- function
- cross_val_predict
- input tokens (receivers)
dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)estimator
: instance of a machine learning classtypes: (“<class ‘sklearn.linear_model.base.LinearRegression’>”, “<class ‘sklearn.linear_model.ridge.Ridge’>”, “<class ‘sklearn.kernel_ridge.KernelRidge’>”, “<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”, “<class ‘sklearn.linear_model.least_angle.Lars’>”, “<class ‘sklearn.linear_model.least_angle.LassoLars’>”, “<class ‘sklearn.linear_model.bayes.BayesianRidge’>”, “<class ‘sklearn.linear_model.bayes.ARDRegression’>”, “<class ‘sklearn.linear_model.logistic.LogisticRegression’>”, “<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”, “<class ‘sklearn.svm.classes.SVR’>”, “<class ‘sklearn.svm.classes.NuSVR’>”, “<class ‘sklearn.svm.classes.LinearSVR’>”, “<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”, “<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”)scorer
: instance of scikit-learn’s make_scorer classtypes: (“<class ‘sklearn.metrics.scorer._PredictScorer’>”,)cv
: cross-validation generator or instance objecttypes: (“<type ‘generator’>”, “<class ‘sklearn.model_selection._split.KFold’>”, “<class ‘sklearn.model_selection._split.ShuffleSplit’>”, “<class ‘sklearn.model_selection._split.StratifiedShuffleSplit’>”, “<class ‘sklearn.model_selection._split.LeaveOneOut’>”)- output tokens (senders)
dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = cross_val_predict
<< track_header = True
<< n_jobs = 1
<< verbose = 0
<< fit_params = None
<< method = predict
<< pre_dispatch = 2 * n_jobs
<< estimator = @estimator
<< groups = None
<< y = None
<< X = @dfx
<< cv = None
>> id dfy
>> id dfx
>> id estimator
>> id scorer
>> id cv
>> id dfy_predict
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_predict.html#sklearn.model_selection.cross_val_predict
cross_val_score
- task
- Search
- subtask
- validate
- host
- sklearn
- function
- cross_val_score
- input tokens (receivers)
dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)estimator
: instance of a machine learning classtypes: (“<class ‘sklearn.linear_model.base.LinearRegression’>”, “<class ‘sklearn.linear_model.ridge.Ridge’>”, “<class ‘sklearn.kernel_ridge.KernelRidge’>”, “<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”, “<class ‘sklearn.linear_model.least_angle.Lars’>”, “<class ‘sklearn.linear_model.least_angle.LassoLars’>”, “<class ‘sklearn.linear_model.bayes.BayesianRidge’>”, “<class ‘sklearn.linear_model.bayes.ARDRegression’>”, “<class ‘sklearn.linear_model.logistic.LogisticRegression’>”, “<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”, “<class ‘sklearn.svm.classes.SVR’>”, “<class ‘sklearn.svm.classes.NuSVR’>”, “<class ‘sklearn.svm.classes.LinearSVR’>”, “<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”, “<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”)scorer
: instance of scikit-learn’s make_scorer classtypes: (“<class ‘sklearn.metrics.scorer._PredictScorer’>”,)cv
: cross-validation generator or instance objecttypes: (“<type ‘generator’>”, “<class ‘sklearn.model_selection._split.KFold’>”, “<class ‘sklearn.model_selection._split.ShuffleSplit’>”, “<class ‘sklearn.model_selection._split.StratifiedShuffleSplit’>”, “<class ‘sklearn.model_selection._split.LeaveOneOut’>”)- output tokens (senders)
scores
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = cross_val_score
<< track_header = True
<< scoring = None
<< n_jobs = 1
<< verbose = 0
<< fit_params = None
<< pre_dispatch = 2 * n_jobs
<< estimator = @estimator
<< groups = None
<< y = None
<< X = @dfx
<< cv = None
>> id dfy
>> id dfx
>> id estimator
>> id scorer
>> id cv
>> id scores
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html#sklearn.model_selection.cross_val_score
evaluate_regression
- task
- Search
- subtask
- evaluate
- host
- sklearn
- function
- evaluate_regression
- input tokens (receivers)
dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfy_predict
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
evaluation_results_
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)evaluator
: dictionary of metrics and their score functiontypes: (“<type ‘dict’>”,)- wrapper parameters
mae_multioutput
: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.mean_absolute_error, (default:uniform_average)choose one of: (‘raw_values’, ‘uniform_average’)r2_score
: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score, (default:False)choose one of: (True, False)mean_absolute_error
: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.mean_absolute_error, (default:False)choose one of: (True, False)multioutput
: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score, (default:uniform_average)choose one of: (‘raw_values’, ‘uniform_average’, ‘variance_weighted’)mse_sample_weight
: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html#sklearn.metrics.mean_squared_error, (default:None)choose one of: []rmse_multioutput
: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html#sklearn.metrics.mean_squared_error, (default:uniform_average)choose one of: (‘raw_values’, ‘uniform_average’)median_absolute_error
: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html#sklearn.metrics.median_absolute_error, (default:False)choose one of: (True, False)mae_sample_weight
: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.mean_absolute_error, (default:None)choose one of: []rmse_sample_weight
: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html#sklearn.metrics.mean_squared_error, (default:None)choose one of: []track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)mean_squared_error
: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html#sklearn.metrics.mean_squared_error, (default:False)choose one of: (True, False)root_mean_squared_error
: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html#sklearn.metrics.mean_squared_error, (default:False)choose one of: (True, False)explained_variance_score
: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.explained_variance_score.html#sklearn.metrics.explained_variance_score, (default:False)choose one of: (True, False)r2_sample_weight
: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score, (default:None)choose one of: []ev_sample_weight
: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.explained_variance_score.html#sklearn.metrics.explained_variance_score, (default:None)choose one of: []ev_multioutput
: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.explained_variance_score.html#sklearn.metrics.explained_variance_score, (default:uniform_average)choose one of: (‘raw_values’, ‘uniform_average’, ‘variance_weighted’)mse_multioutput
: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html#sklearn.metrics.mean_squared_error, (default:uniform_average)choose one of: (‘raw_values’, ‘uniform_average’)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = evaluate_regression
<< mae_multioutput = uniform_average
<< r2_score = False
<< mean_absolute_error = False
<< multioutput = uniform_average
<< mse_sample_weight = None
<< rmse_multioutput = uniform_average
<< median_absolute_error = False
<< mae_sample_weight = None
<< rmse_sample_weight = None
<< track_header = True
<< mean_squared_error = False
<< root_mean_squared_error = False
<< explained_variance_score = False
<< r2_sample_weight = None
<< ev_sample_weight = None
<< ev_multioutput = uniform_average
<< mse_multioutput = uniform_average
>> id dfy
>> id dfy_predict
>> id evaluation_results_
>> id evaluator
Note
The documentation page for function parameters: http://scikit-learn.org/dev/modules/model_evaluation.html#regression-metrics
learning_curve
- task
- Search
- subtask
- grid
- host
- sklearn
- function
- learning_curve
- input tokens (receivers)
dfy
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)estimator
: instance of a machine learning classtypes: (“<class ‘sklearn.linear_model.base.LinearRegression’>”, “<class ‘sklearn.linear_model.ridge.Ridge’>”, “<class ‘sklearn.kernel_ridge.KernelRidge’>”, “<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”, “<class ‘sklearn.linear_model.least_angle.Lars’>”, “<class ‘sklearn.linear_model.least_angle.LassoLars’>”, “<class ‘sklearn.linear_model.bayes.BayesianRidge’>”, “<class ‘sklearn.linear_model.bayes.ARDRegression’>”, “<class ‘sklearn.linear_model.logistic.LogisticRegression’>”, “<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”, “<class ‘sklearn.svm.classes.SVR’>”, “<class ‘sklearn.svm.classes.NuSVR’>”, “<class ‘sklearn.svm.classes.LinearSVR’>”, “<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”, “<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”)scorer
: instance of scikit-learn’s make_scorer classtypes: (“<class ‘sklearn.metrics.scorer._PredictScorer’>”,)cv
: instance of scikit-learn’s cross validation generator or instance objecttypes: (“<type ‘generator’>”, “<class ‘sklearn.model_selection._split.KFold’>”, “<class ‘sklearn.model_selection._split.ShuffleSplit’>”, “<class ‘sklearn.model_selection._split.StratifiedShuffleSplit’>”, “<class ‘sklearn.model_selection._split.LeaveOneOut’>”)- output tokens (senders)
train_sizes_abs
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)extended_result_
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)test_scores
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)train_scores
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = learning_curve
<< track_header = True
<< scoring = None
<< n_jobs = 1
<< shuffle = False
<< groups = None
<< random_state = None
<< pre_dispatch = all
<< estimator = @estimator
<< exploit_incremental_learning = False
<< train_sizes = [0.1, 0.33, 0.55, 0.78, 1.0]
<< y = None
<< X = @dfx
<< cv = None
<< verbose = 0
>> id dfy
>> id dfx
>> id estimator
>> id scorer
>> id cv
>> id train_sizes_abs
>> id extended_result_
>> id test_scores
>> id train_scores
Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html#sklearn.model_selection.learning_curve
scorer_regression
- task
- Search
- subtask
- evaluate
- host
- sklearn
- function
- scorer_regression
- input tokens (receivers)
- this block doesn’t receive anything
- output tokens (senders)
scorer
: Callable object that returns a scalar scoretypes: (“<class ‘sklearn.metrics.scorer._PredictScorer’>”,)- wrapper parameters
track_header
: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)metric
: string: ‘mae’, ‘mse’, ‘r2’, (default:mae)choose one of: (‘mae’, ‘mse’, ‘r2’)- required packages
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view
##
<< host = sklearn << function = scorer_regression
<< track_header = True
<< metric = mae
<< greater_is_better = True
<< needs_threshold = False
<< needs_proba = False
<< kwargs = {}
>> id scorer
Note
The documentation page for function parameters: http://scikit-learn.org/0.15/modules/generated/sklearn.metrics.make_scorer.html#sklearn.metrics.make_scorer
corr
- task
- Search
- subtask
- evaluate
- host
- pandas
- function
- corr
- input tokens (receivers)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders)
df
: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- required packages
- pandas, 0.20.3
- config file view
##
<< host = pandas << function = corr
<< min_periods = 1
<< method = pearson
>> id df
>> id df
Note
The documentation page for function parameters: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.corr.html