GridSearchCV
- task:
- Search
- subtask:
- grid
- host:
- sklearn
- function:
- GridSearchCV
- input tokens (receivers):
dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)estimator: instance of a machine learning classtypes: (“<type ‘str’>”, “<class ‘sklearn.linear_model.base.LinearRegression’>”, “<class ‘sklearn.linear_model.ridge.Ridge’>”, “<class ‘sklearn.kernel_ridge.KernelRidge’>”, “<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”, “<class ‘sklearn.linear_model.least_angle.Lars’>”, “<class ‘sklearn.linear_model.least_angle.LassoLars’>”, “<class ‘sklearn.linear_model.bayes.BayesianRidge’>”, “<class ‘sklearn.linear_model.bayes.ARDRegression’>”, “<class ‘sklearn.linear_model.logistic.LogisticRegression’>”, “<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”, “<class ‘sklearn.svm.classes.SVR’>”, “<class ‘sklearn.svm.classes.NuSVR’>”, “<class ‘sklearn.svm.classes.LinearSVR’>”, “<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”, “<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”)scorer: instance of scikit-learn’s make_scorer classtypes: (“<class ‘sklearn.metrics.scorer._PredictScorer’>”,)cv: instance of scikit-learn’s cross validation generator or instance objecttypes: (“<type ‘generator’>”, “<class ‘sklearn.model_selection._split.KFold’>”, “<class ‘sklearn.model_selection._split.ShuffleSplit’>”, “<class ‘sklearn.model_selection._split.StratifiedShuffleSplit’>”, “<class ‘sklearn.model_selection._split.LeaveOneOut’>”)- output tokens (senders):
cv_results_: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)api: instance of scikit-learn’s GridSearchCV classtypes: (“<class ‘sklearn.grid_search.GridSearchCV’>”,)best_estimator_: instance of a machine learning classtypes: (“<class ‘sklearn.linear_model.base.LinearRegression’>”, “<class ‘sklearn.linear_model.ridge.Ridge’>”, “<class ‘sklearn.kernel_ridge.KernelRidge’>”, “<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”, “<class ‘sklearn.linear_model.least_angle.Lars’>”, “<class ‘sklearn.linear_model.least_angle.LassoLars’>”, “<class ‘sklearn.linear_model.bayes.BayesianRidge’>”, “<class ‘sklearn.linear_model.bayes.ARDRegression’>”, “<class ‘sklearn.linear_model.logistic.LogisticRegression’>”, “<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”, “<class ‘sklearn.svm.classes.SVR’>”, “<class ‘sklearn.svm.classes.NuSVR’>”, “<class ‘sklearn.svm.classes.LinearSVR’>”, “<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”, “<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = GridSearchCV<< track_header = True<< scoring = None<< n_jobs = 1<< verbose = 0<< fit_params = None<< refit = True<< return_train_score = True<< iid = True<< estimator = @estimator<< error_score = raise<< pre_dispatch = 2 * n_jobs<< param_grid = {}<< cv = None>> id dfy>> id dfx>> id estimator>> id scorer>> id cv>> id cv_results_>> id api>> id best_estimator_Note
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
cross_val_predict
- task:
- Search
- subtask:
- validate
- host:
- sklearn
- function:
- cross_val_predict
- input tokens (receivers):
dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)estimator: instance of a machine learning classtypes: (“<class ‘sklearn.linear_model.base.LinearRegression’>”, “<class ‘sklearn.linear_model.ridge.Ridge’>”, “<class ‘sklearn.kernel_ridge.KernelRidge’>”, “<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”, “<class ‘sklearn.linear_model.least_angle.Lars’>”, “<class ‘sklearn.linear_model.least_angle.LassoLars’>”, “<class ‘sklearn.linear_model.bayes.BayesianRidge’>”, “<class ‘sklearn.linear_model.bayes.ARDRegression’>”, “<class ‘sklearn.linear_model.logistic.LogisticRegression’>”, “<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”, “<class ‘sklearn.svm.classes.SVR’>”, “<class ‘sklearn.svm.classes.NuSVR’>”, “<class ‘sklearn.svm.classes.LinearSVR’>”, “<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”, “<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”)scorer: instance of scikit-learn’s make_scorer classtypes: (“<class ‘sklearn.metrics.scorer._PredictScorer’>”,)cv: cross-validation generator or instance objecttypes: (“<type ‘generator’>”, “<class ‘sklearn.model_selection._split.KFold’>”, “<class ‘sklearn.model_selection._split.ShuffleSplit’>”, “<class ‘sklearn.model_selection._split.StratifiedShuffleSplit’>”, “<class ‘sklearn.model_selection._split.LeaveOneOut’>”)- output tokens (senders):
dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = cross_val_predict<< track_header = True<< n_jobs = 1<< verbose = 0<< fit_params = None<< method = predict<< pre_dispatch = 2 * n_jobs<< estimator = @estimator<< groups = None<< y = None<< X = @dfx<< cv = None>> id dfy>> id dfx>> id estimator>> id scorer>> id cv>> id dfy_predictNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_predict.html#sklearn.model_selection.cross_val_predict
cross_val_score
- task:
- Search
- subtask:
- validate
- host:
- sklearn
- function:
- cross_val_score
- input tokens (receivers):
dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)estimator: instance of a machine learning classtypes: (“<class ‘sklearn.linear_model.base.LinearRegression’>”, “<class ‘sklearn.linear_model.ridge.Ridge’>”, “<class ‘sklearn.kernel_ridge.KernelRidge’>”, “<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”, “<class ‘sklearn.linear_model.least_angle.Lars’>”, “<class ‘sklearn.linear_model.least_angle.LassoLars’>”, “<class ‘sklearn.linear_model.bayes.BayesianRidge’>”, “<class ‘sklearn.linear_model.bayes.ARDRegression’>”, “<class ‘sklearn.linear_model.logistic.LogisticRegression’>”, “<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”, “<class ‘sklearn.svm.classes.SVR’>”, “<class ‘sklearn.svm.classes.NuSVR’>”, “<class ‘sklearn.svm.classes.LinearSVR’>”, “<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”, “<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”)scorer: instance of scikit-learn’s make_scorer classtypes: (“<class ‘sklearn.metrics.scorer._PredictScorer’>”,)cv: cross-validation generator or instance objecttypes: (“<type ‘generator’>”, “<class ‘sklearn.model_selection._split.KFold’>”, “<class ‘sklearn.model_selection._split.ShuffleSplit’>”, “<class ‘sklearn.model_selection._split.StratifiedShuffleSplit’>”, “<class ‘sklearn.model_selection._split.LeaveOneOut’>”)- output tokens (senders):
scores: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = cross_val_score<< track_header = True<< scoring = None<< n_jobs = 1<< verbose = 0<< fit_params = None<< pre_dispatch = 2 * n_jobs<< estimator = @estimator<< groups = None<< y = None<< X = @dfx<< cv = None>> id dfy>> id dfx>> id estimator>> id scorer>> id cv>> id scoresNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html#sklearn.model_selection.cross_val_score
evaluate_regression
- task:
- Search
- subtask:
- evaluate
- host:
- sklearn
- function:
- evaluate_regression
- input tokens (receivers):
dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfy_predict: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
evaluation_results_: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)evaluator: dictionary of metrics and their score functiontypes: (“<type ‘dict’>”,)- wrapper parameters:
mae_multioutput: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.mean_absolute_error, (default:uniform_average)choose one of: (‘raw_values’, ‘uniform_average’)r2_score: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score, (default:False)choose one of: (True, False)mean_absolute_error: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.mean_absolute_error, (default:False)choose one of: (True, False)multioutput: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score, (default:uniform_average)choose one of: (‘raw_values’, ‘uniform_average’, ‘variance_weighted’)mse_sample_weight: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html#sklearn.metrics.mean_squared_error, (default:None)choose one of: []rmse_multioutput: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html#sklearn.metrics.mean_squared_error, (default:uniform_average)choose one of: (‘raw_values’, ‘uniform_average’)median_absolute_error: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html#sklearn.metrics.median_absolute_error, (default:False)choose one of: (True, False)mae_sample_weight: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.mean_absolute_error, (default:None)choose one of: []rmse_sample_weight: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html#sklearn.metrics.mean_squared_error, (default:None)choose one of: []track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)mean_squared_error: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html#sklearn.metrics.mean_squared_error, (default:False)choose one of: (True, False)root_mean_squared_error: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html#sklearn.metrics.mean_squared_error, (default:False)choose one of: (True, False)explained_variance_score: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.explained_variance_score.html#sklearn.metrics.explained_variance_score, (default:False)choose one of: (True, False)r2_sample_weight: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score, (default:None)choose one of: []ev_sample_weight: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.explained_variance_score.html#sklearn.metrics.explained_variance_score, (default:None)choose one of: []ev_multioutput: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.explained_variance_score.html#sklearn.metrics.explained_variance_score, (default:uniform_average)choose one of: (‘raw_values’, ‘uniform_average’, ‘variance_weighted’)mse_multioutput: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html#sklearn.metrics.mean_squared_error, (default:uniform_average)choose one of: (‘raw_values’, ‘uniform_average’)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = evaluate_regression<< mae_multioutput = uniform_average<< r2_score = False<< mean_absolute_error = False<< multioutput = uniform_average<< mse_sample_weight = None<< rmse_multioutput = uniform_average<< median_absolute_error = False<< mae_sample_weight = None<< rmse_sample_weight = None<< track_header = True<< mean_squared_error = False<< root_mean_squared_error = False<< explained_variance_score = False<< r2_sample_weight = None<< ev_sample_weight = None<< ev_multioutput = uniform_average<< mse_multioutput = uniform_average>> id dfy>> id dfy_predict>> id evaluation_results_>> id evaluatorNote
The documentation page for function parameters: http://scikit-learn.org/dev/modules/model_evaluation.html#regression-metrics
learning_curve
- task:
- Search
- subtask:
- grid
- host:
- sklearn
- function:
- learning_curve
- input tokens (receivers):
dfy: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)dfx: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)estimator: instance of a machine learning classtypes: (“<class ‘sklearn.linear_model.base.LinearRegression’>”, “<class ‘sklearn.linear_model.ridge.Ridge’>”, “<class ‘sklearn.kernel_ridge.KernelRidge’>”, “<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”, “<class ‘sklearn.linear_model.least_angle.Lars’>”, “<class ‘sklearn.linear_model.least_angle.LassoLars’>”, “<class ‘sklearn.linear_model.bayes.BayesianRidge’>”, “<class ‘sklearn.linear_model.bayes.ARDRegression’>”, “<class ‘sklearn.linear_model.logistic.LogisticRegression’>”, “<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”, “<class ‘sklearn.svm.classes.SVR’>”, “<class ‘sklearn.svm.classes.NuSVR’>”, “<class ‘sklearn.svm.classes.LinearSVR’>”, “<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”, “<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”)scorer: instance of scikit-learn’s make_scorer classtypes: (“<class ‘sklearn.metrics.scorer._PredictScorer’>”,)cv: instance of scikit-learn’s cross validation generator or instance objecttypes: (“<type ‘generator’>”, “<class ‘sklearn.model_selection._split.KFold’>”, “<class ‘sklearn.model_selection._split.ShuffleSplit’>”, “<class ‘sklearn.model_selection._split.StratifiedShuffleSplit’>”, “<class ‘sklearn.model_selection._split.LeaveOneOut’>”)- output tokens (senders):
train_sizes_abs: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)extended_result_: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)test_scores: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)train_scores: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = learning_curve<< track_header = True<< scoring = None<< n_jobs = 1<< shuffle = False<< groups = None<< random_state = None<< pre_dispatch = all<< estimator = @estimator<< exploit_incremental_learning = False<< train_sizes = [0.1, 0.33, 0.55, 0.78, 1.0]<< y = None<< X = @dfx<< cv = None<< verbose = 0>> id dfy>> id dfx>> id estimator>> id scorer>> id cv>> id train_sizes_abs>> id extended_result_>> id test_scores>> id train_scoresNote
The documentation page for function parameters: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html#sklearn.model_selection.learning_curve
scorer_regression
- task:
- Search
- subtask:
- evaluate
- host:
- sklearn
- function:
- scorer_regression
- input tokens (receivers):
- this block doesn’t receive anything
- output tokens (senders):
scorer: Callable object that returns a scalar scoretypes: (“<class ‘sklearn.metrics.scorer._PredictScorer’>”,)- wrapper parameters:
track_header: Boolean, (default:True)if True, the input dataframe’s header will be transformed to the output dataframechoose one of: (True, False)metric: string: ‘mae’, ‘mse’, ‘r2’, (default:mae)choose one of: (‘mae’, ‘mse’, ‘r2’)- required packages:
- scikit-learn, 0.19.0pandas, 0.20.3
- config file view:
##<< host = sklearn << function = scorer_regression<< track_header = True<< metric = mae<< greater_is_better = True<< needs_threshold = False<< needs_proba = False<< kwargs = {}>> id scorerNote
The documentation page for function parameters: http://scikit-learn.org/0.15/modules/generated/sklearn.metrics.make_scorer.html#sklearn.metrics.make_scorer
corr
- task:
- Search
- subtask:
- evaluate
- host:
- pandas
- function:
- corr
- input tokens (receivers):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- output tokens (senders):
df: pandas dataframetypes: (“<class ‘pandas.core.frame.DataFrame’>”,)- required packages:
- pandas, 0.20.3
- config file view:
##<< host = pandas << function = corr<< min_periods = 1<< method = pearson>> id df>> id dfNote
The documentation page for function parameters: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.corr.html