GridSearchCV

task
Search
subtask
grid
host
sklearn
function
GridSearchCV
input tokens (receivers)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
estimator : instance of a machine learning class
types: (“<type ‘str’>”, “<class ‘sklearn.linear_model.base.LinearRegression’>”, “<class ‘sklearn.linear_model.ridge.Ridge’>”, “<class ‘sklearn.kernel_ridge.KernelRidge’>”, “<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”, “<class ‘sklearn.linear_model.least_angle.Lars’>”, “<class ‘sklearn.linear_model.least_angle.LassoLars’>”, “<class ‘sklearn.linear_model.bayes.BayesianRidge’>”, “<class ‘sklearn.linear_model.bayes.ARDRegression’>”, “<class ‘sklearn.linear_model.logistic.LogisticRegression’>”, “<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”, “<class ‘sklearn.svm.classes.SVR’>”, “<class ‘sklearn.svm.classes.NuSVR’>”, “<class ‘sklearn.svm.classes.LinearSVR’>”, “<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”, “<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”)
scorer : instance of scikit-learn’s make_scorer class
types: (“<class ‘sklearn.metrics.scorer._PredictScorer’>”,)
cv : instance of scikit-learn’s cross validation generator or instance object
types: (“<type ‘generator’>”, “<class ‘sklearn.model_selection._split.KFold’>”, “<class ‘sklearn.model_selection._split.ShuffleSplit’>”, “<class ‘sklearn.model_selection._split.StratifiedShuffleSplit’>”, “<class ‘sklearn.model_selection._split.LeaveOneOut’>”)
output tokens (senders)
cv_results_ : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
api : instance of scikit-learn’s GridSearchCV class
types: (“<class ‘sklearn.grid_search.GridSearchCV’>”,)
best_estimator_ : instance of a machine learning class
types: (“<class ‘sklearn.linear_model.base.LinearRegression’>”, “<class ‘sklearn.linear_model.ridge.Ridge’>”, “<class ‘sklearn.kernel_ridge.KernelRidge’>”, “<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”, “<class ‘sklearn.linear_model.least_angle.Lars’>”, “<class ‘sklearn.linear_model.least_angle.LassoLars’>”, “<class ‘sklearn.linear_model.bayes.BayesianRidge’>”, “<class ‘sklearn.linear_model.bayes.ARDRegression’>”, “<class ‘sklearn.linear_model.logistic.LogisticRegression’>”, “<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”, “<class ‘sklearn.svm.classes.SVR’>”, “<class ‘sklearn.svm.classes.NuSVR’>”, “<class ‘sklearn.svm.classes.LinearSVR’>”, “<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”, “<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = GridSearchCV
<< track_header = True
<< scoring = None
<< n_jobs = 1
<< verbose = 0
<< fit_params = None
<< refit = True
<< return_train_score = True
<< iid = True
<< estimator = @estimator
<< error_score = raise
<< pre_dispatch = 2 * n_jobs
<< param_grid = {}
<< cv = None
>> id dfy
>> id dfx
>> id estimator
>> id scorer
>> id cv
>> id cv_results_
>> id api
>> id best_estimator_

cross_val_predict

task
Search
subtask
validate
host
sklearn
function
cross_val_predict
input tokens (receivers)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
estimator : instance of a machine learning class
types: (“<class ‘sklearn.linear_model.base.LinearRegression’>”, “<class ‘sklearn.linear_model.ridge.Ridge’>”, “<class ‘sklearn.kernel_ridge.KernelRidge’>”, “<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”, “<class ‘sklearn.linear_model.least_angle.Lars’>”, “<class ‘sklearn.linear_model.least_angle.LassoLars’>”, “<class ‘sklearn.linear_model.bayes.BayesianRidge’>”, “<class ‘sklearn.linear_model.bayes.ARDRegression’>”, “<class ‘sklearn.linear_model.logistic.LogisticRegression’>”, “<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”, “<class ‘sklearn.svm.classes.SVR’>”, “<class ‘sklearn.svm.classes.NuSVR’>”, “<class ‘sklearn.svm.classes.LinearSVR’>”, “<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”, “<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”)
scorer : instance of scikit-learn’s make_scorer class
types: (“<class ‘sklearn.metrics.scorer._PredictScorer’>”,)
cv : cross-validation generator or instance object
types: (“<type ‘generator’>”, “<class ‘sklearn.model_selection._split.KFold’>”, “<class ‘sklearn.model_selection._split.ShuffleSplit’>”, “<class ‘sklearn.model_selection._split.StratifiedShuffleSplit’>”, “<class ‘sklearn.model_selection._split.LeaveOneOut’>”)
output tokens (senders)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = cross_val_predict
<< track_header = True
<< n_jobs = 1
<< verbose = 0
<< fit_params = None
<< method = predict
<< pre_dispatch = 2 * n_jobs
<< estimator = @estimator
<< groups = None
<< y = None
<< X = @dfx
<< cv = None
>> id dfy
>> id dfx
>> id estimator
>> id scorer
>> id cv
>> id dfy_predict

cross_val_score

task
Search
subtask
validate
host
sklearn
function
cross_val_score
input tokens (receivers)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
estimator : instance of a machine learning class
types: (“<class ‘sklearn.linear_model.base.LinearRegression’>”, “<class ‘sklearn.linear_model.ridge.Ridge’>”, “<class ‘sklearn.kernel_ridge.KernelRidge’>”, “<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”, “<class ‘sklearn.linear_model.least_angle.Lars’>”, “<class ‘sklearn.linear_model.least_angle.LassoLars’>”, “<class ‘sklearn.linear_model.bayes.BayesianRidge’>”, “<class ‘sklearn.linear_model.bayes.ARDRegression’>”, “<class ‘sklearn.linear_model.logistic.LogisticRegression’>”, “<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”, “<class ‘sklearn.svm.classes.SVR’>”, “<class ‘sklearn.svm.classes.NuSVR’>”, “<class ‘sklearn.svm.classes.LinearSVR’>”, “<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”, “<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”)
scorer : instance of scikit-learn’s make_scorer class
types: (“<class ‘sklearn.metrics.scorer._PredictScorer’>”,)
cv : cross-validation generator or instance object
types: (“<type ‘generator’>”, “<class ‘sklearn.model_selection._split.KFold’>”, “<class ‘sklearn.model_selection._split.ShuffleSplit’>”, “<class ‘sklearn.model_selection._split.StratifiedShuffleSplit’>”, “<class ‘sklearn.model_selection._split.LeaveOneOut’>”)
output tokens (senders)
scores : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = cross_val_score
<< track_header = True
<< scoring = None
<< n_jobs = 1
<< verbose = 0
<< fit_params = None
<< pre_dispatch = 2 * n_jobs
<< estimator = @estimator
<< groups = None
<< y = None
<< X = @dfx
<< cv = None
>> id dfy
>> id dfx
>> id estimator
>> id scorer
>> id cv
>> id scores

evaluate_regression

task
Search
subtask
evaluate
host
sklearn
function
evaluate_regression
input tokens (receivers)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfy_predict : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
evaluation_results_ : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
evaluator : dictionary of metrics and their score function
types: (“<type ‘dict’>”,)
wrapper parameters

choose one of: (‘raw_values’, ‘uniform_average’)

choose one of: (True, False)

choose one of: (True, False)

choose one of: (‘raw_values’, ‘uniform_average’, ‘variance_weighted’)

choose one of: []

choose one of: (‘raw_values’, ‘uniform_average’)

choose one of: (True, False)

choose one of: []

choose one of: []
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)

choose one of: (True, False)

choose one of: (True, False)

choose one of: (True, False)

choose one of: []

choose one of: []

choose one of: (‘raw_values’, ‘uniform_average’, ‘variance_weighted’)

choose one of: (‘raw_values’, ‘uniform_average’)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = evaluate_regression
<< mae_multioutput = uniform_average
<< r2_score = False
<< mean_absolute_error = False
<< multioutput = uniform_average
<< mse_sample_weight = None
<< rmse_multioutput = uniform_average
<< median_absolute_error = False
<< mae_sample_weight = None
<< rmse_sample_weight = None
<< track_header = True
<< mean_squared_error = False
<< root_mean_squared_error = False
<< explained_variance_score = False
<< r2_sample_weight = None
<< ev_sample_weight = None
<< ev_multioutput = uniform_average
<< mse_multioutput = uniform_average
>> id dfy
>> id dfy_predict
>> id evaluation_results_
>> id evaluator

Note

The documentation page for function parameters: http://scikit-learn.org/dev/modules/model_evaluation.html#regression-metrics

learning_curve

task
Search
subtask
grid
host
sklearn
function
learning_curve
input tokens (receivers)
dfy : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
dfx : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
estimator : instance of a machine learning class
types: (“<class ‘sklearn.linear_model.base.LinearRegression’>”, “<class ‘sklearn.linear_model.ridge.Ridge’>”, “<class ‘sklearn.kernel_ridge.KernelRidge’>”, “<class ‘sklearn.linear_model.coordinate_descent.Lasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskLasso’>”, “<class ‘sklearn.linear_model.coordinate_descent.ElasticNet’>”, “<class ‘sklearn.linear_model.coordinate_descent.MultiTaskElasticNet’>”, “<class ‘sklearn.linear_model.least_angle.Lars’>”, “<class ‘sklearn.linear_model.least_angle.LassoLars’>”, “<class ‘sklearn.linear_model.bayes.BayesianRidge’>”, “<class ‘sklearn.linear_model.bayes.ARDRegression’>”, “<class ‘sklearn.linear_model.logistic.LogisticRegression’>”, “<class ‘sklearn.linear_model.stochastic_gradient.SGDRegressor’>”, “<class ‘sklearn.svm.classes.SVR’>”, “<class ‘sklearn.svm.classes.NuSVR’>”, “<class ‘sklearn.svm.classes.LinearSVR’>”, “<class ‘sklearn.neural_network.multilayer_perceptron.MLPRegressor’>”, “<class ‘chemml.nn.keras.mlp.MLP_sklearn’>”)
scorer : instance of scikit-learn’s make_scorer class
types: (“<class ‘sklearn.metrics.scorer._PredictScorer’>”,)
cv : instance of scikit-learn’s cross validation generator or instance object
types: (“<type ‘generator’>”, “<class ‘sklearn.model_selection._split.KFold’>”, “<class ‘sklearn.model_selection._split.ShuffleSplit’>”, “<class ‘sklearn.model_selection._split.StratifiedShuffleSplit’>”, “<class ‘sklearn.model_selection._split.LeaveOneOut’>”)
output tokens (senders)
train_sizes_abs : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
extended_result_ : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
test_scores : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
train_scores : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = learning_curve
<< track_header = True
<< scoring = None
<< n_jobs = 1
<< shuffle = False
<< groups = None
<< random_state = None
<< pre_dispatch = all
<< estimator = @estimator
<< exploit_incremental_learning = False
<< train_sizes = [0.1, 0.33, 0.55, 0.78, 1.0]
<< y = None
<< X = @dfx
<< cv = None
<< verbose = 0
>> id dfy
>> id dfx
>> id estimator
>> id scorer
>> id cv
>> id train_sizes_abs
>> id extended_result_
>> id test_scores
>> id train_scores

scorer_regression

task
Search
subtask
evaluate
host
sklearn
function
scorer_regression
input tokens (receivers)
this block doesn’t receive anything
output tokens (senders)
scorer : Callable object that returns a scalar score
types: (“<class ‘sklearn.metrics.scorer._PredictScorer’>”,)
wrapper parameters
track_header : Boolean, (default:True)
if True, the input dataframe’s header will be transformed to the output dataframe
choose one of: (True, False)
metric : string: ‘mae’, ‘mse’, ‘r2’, (default:mae)
required packages
scikit-learn, 0.19.0
pandas, 0.20.3
config file view
##
<< host = sklearn    << function = scorer_regression
<< track_header = True
<< metric = mae
<< greater_is_better = True
<< needs_threshold = False
<< needs_proba = False
<< kwargs = {}
>> id scorer

corr

task
Search
subtask
evaluate
host
pandas
function
corr
input tokens (receivers)
df : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
output tokens (senders)
df : pandas dataframe
types: (“<class ‘pandas.core.frame.DataFrame’>”,)
required packages
pandas, 0.20.3
config file view
##
<< host = pandas    << function = corr
<< min_periods = 1
<< method = pearson
>> id df
>> id df

Note

The documentation page for function parameters: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.corr.html